科 目 | 数学T ( Mathematics I ) | |||
---|---|---|---|---|
担当教員 | 北村 知徳 教授 | |||
対象学年等 | 機械工学科・2年A組・通年・必修・4単位【講義】 ( 学修単位I ) | |||
学習・教育 目標 |
A1(100%) | |||
授業の概要 と方針 |
理工学系の基礎となる微分・積分学を講義する. 概念の理解に重点を置き,豊富な演習を通じて運用能力を高める. | |||
到 達 目 標 |
1 | 【A1】 無限数列とその和についての計算ができる. | 2 | 【A1】 関数の極限・連続性などの概念を理解し,極限を計算できる. | 3 | 【A1】 様々な関数の微分係数・導関数・第2次導関数を計算でき,グラフの概形,接線,速度・加速度などに応用できる. | 4 | 【A1】 様々な関数の不定積分・定積分を計算でき,積分を面積・体積などに応用できる. | 5 | 6 | 7 | 8 | 9 | 10 |
評 価 方 法 と 基 準 |
到 達 目 標 毎 |
1 | 試験,小テスト,レポートで評価する. | |
2 | 試験,小テスト,レポートで評価する. | |||
3 | 試験,小テスト,レポートで評価する. | |||
4 | 試験,小テスト,レポートで評価する. | |||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
総 合 評 価 |
成績は,試験70% レポート18% 小テスト10% 実力試験2% として評価する.試験成績は中間試験と定期試験の平均点とする.レポートは適宜課す.100点満点で60点以上を合格とする. | |||
テキスト | 「新編 高専の数学2 (第2版・新装版)」:田代嘉宏・難波完爾 編(森北出版) 「新編 高専の数学2問題集 第2版」:田代嘉宏・難波完爾 編(森北出版) 「新課程 チャート式 基礎と演習 数学II+B,数学III」:チャート研究所 編著(数研出版) |
|||
参考書 | 「新版数学シリーズ 新版 微分積分I」:岡本和夫 監修(実教出版) 「新版数学シリーズ 新版 微分積分I 演習」:岡本和夫 監修(実教出版) 「新 微分積分I 改訂版」:高遠節夫 他 著(大日本図書) 「新 微分積分I 問題集 改訂版」:高遠節夫 他 著(大日本図書) 「大学・高専生のための 解法演習 微分積分I」:糸岐宣昭・三ッ廣孝 著(森北出版) |
|||
関連科目 | 1年の数学I,数学II | |||
履修上の 注意事項 |
・参考書に挙げた書籍は全部揃える必要はない.・4月の最初の授業時に,1年時の数学の内容に関する実力テストを実施する.・春休みの課題と春の実力試験を成績に加味する. |
週 | 上段:テーマ/下段:内容(目標、準備など) |
---|---|
1 | 実力試験,無限数列の極限 |
実力試験を行う. 無限数列の極限について学ぶ. | |
2 | 無限級数とその和 |
無限級数の扱いについて学ぶ. | |
3 | 関数の極限値,微分係数・導関数 |
関数の極限について学ぶ. 平均変化率・微分係数・導関数について学ぶ. | |
4 | 導関数の計算,接線と速度 |
整式を例にとって導関数の計算手法を学ぶ. 接線と速度への応用について学ぶ. | |
5 | 関数の増加・減少,関数の極大・極小 |
関数のグラフの概形を調べる手法を学ぶ. | |
6 | 関数の最大値・最小値,いろいろな変化率 |
関数の最大値・最小値を調べる手法を学ぶ. 導関数を様々な事象の解釈に応用する. | |
7 | 関数の極限 |
様々な関数の極限の計算法を学ぶ. | |
8 | 中間試験 |
前期中間試験を行う. | |
9 | 中間試験の解答・解説,関数の連続性 |
前期中間試験の答案を返却し,解答・解説を行う.関数の連続性の概念を学ぶ. | |
10 | 積と商の導関数 |
積や商の導関数の計算について学ぶ. | |
11 | 合成関数とその導関数 |
合成関数の導関数の計算について学ぶ. | |
12 | 対数関数・指数関数の導関数 |
対数関数・指数関数の導関数を計算する. | |
13 | 三角関数の導関数 |
三角関数の導関数を計算する. | |
14 | 接線・法線と近似値 |
いろいろな関数の接線・法線を計算する. | |
15 | 速度・加速度,演習 |
導関数を速度・加速度などに応用する. また,9〜15週の総合的な演習を行う. | |
16 | 関数の増減と極大・極小 |
いろいろな関数のグラフの概形を調べる方法を学ぶ. | |
17 | 方程式・不等式への応用 |
関数のグラフの概形を方程式・不等式などに利用する. | |
18 | 第2次導関数と曲線の凹凸 |
第2次導関数を用いて曲線の概形をより詳しく調べる方法を学ぶ. | |
19 | 逆関数,逆三角関数の導関数 |
逆関数の導関数,逆三角関数とその導関数について学ぶ. | |
20 | 不定積分 |
不定積分の意味と計算法を学ぶ. | |
21 | 置換積分法 |
置換積分の手法を学ぶ. | |
22 | 部分積分法 |
部分積分の手法を学ぶ. | |
23 | 中間試験 |
後期中間試験を行う. | |
24 | 中間試験の解答・解説,いろいろな関数の不定積分 |
後期中間試験の答案を返却し,解答・解説を行う.いろいろな関数の積分の手法を学ぶ. | |
25 | 定積分 |
定積分の意味と計算法を学ぶ. | |
26 | 定積分の置換積分法 |
置換積分による定積分の計算法を学ぶ. | |
27 | 定積分の部分積分法 |
部分積分による定積分の計算法を学ぶ. | |
28 | 面積 |
定積分の面積への応用について学ぶ. | |
29 | 体積 |
定積分の体積への応用について学ぶ. | |
30 | 演習 |
24〜29週の総合的な演習を行う. | |
備 考 |
前期,後期ともに中間試験および定期試験を実施する. |