

2017/Feb./

Introduction of horizontal axis wind turbine rotation mechanism (Beta Ver.xx)

Some fluid dynamics expression is barren of accuracy, because these files aims are for beginners.

About Creative Commons License

Wind Turbine Generator Paper Model by <u>Kazuyoshi WASEDA</u> is licensed under a <u>Creative Commons</u> 表示 - 継承 4.0 国際 License. Refer to the production released in <u>http://www.kobe-kosen.ac.jp/~waseda/wtgpapermodel/index-e.html</u> Check the following adress for the additional use of the files that is not permitted by the license. <u>http://www.kobe-kosen.ac.jp/~waseda/wtgpapermodel/index-e.html</u>

Contents

- Variety of horizontal axis wind turbine
- Foundation of Fluid dynamics and Airfoil element theory
- Horizontal axis wind turbine rotation mechanism
- What is Reynolds Number ?

Variety of horizontal axis wind turbine

Up wind type -Down wind type

Rotor blade located at front side of the tower

Rotor blade located at back side of the tower

Names of parts

- Airfoil
- Rotor Blade
- Nacelle
- Hub (root of the blade)
- Spiner
- Tower

Horizontal axis wind turbine rotation mechanism

Before the wind turbine rotation mechanism,,,

Foundation of Fluid dynamics and Airfoil element theory

See Wikipedia: Misunderstandings about the generation of lift

http://en.wikipedia.org/wiki/Bernoulli%27s_principle#Misunderstandings_about_the_generation_of_lift **Lift (force)**

http://en.wikipedia.org/wiki/Lift_%28force%29

More accurate information of fluid dynamics and the blade element theory

NASA:Incorrect Lift Theory http://www.grc.nasa.gov/WWW/k-12/airplane/wrong1.html

NASA:Incorrect Lift Theory #2 http://www.grc.nasa.gov/WWW/k-12/airplane/wrong2.html

Lift and Drag

- Lift: Normal force caused by flow
- Drag: Parallel force caused by flow

Airfoil: The shape which maximize the lift and minimize the drag

It's relatively same state!

Put an airfoil into the air flow = Move forward an airfoil in the (no flow) air

Flow Rate Q[m³/s]= A_1V_1 = A_2V_2 =Constant

What's happened at around the airfoil ? =upper surface flow velocity is higher than lower surface

Bernoulli's principle

$$\frac{1}{2}V^2 + \frac{p}{\rho} = const.$$

Dynamic Pressure + Piezometric head = const.

V:Flow velocity [m/s] ρ:Pressure[Pa] ρ:Density of the fluid [kg/m³]

See Wikipedia: Misunderstandings about the generation of lift

http://en.wikipedia.org/wiki/Bernoulli%27s_principle#Misunderstandings_about_the_generation_of_lift

Lift (force)

http://en.wikipedia.org/wiki/Lift_%28force%29

Airfoil upper surface shape >>> accelerate flow velocity >>> Low pressure >> Lift force

- Some fluid dynamics expression is barren of accuracy,,,
- In any case, an airfoil is
- the shape that regarded low drag force as high lift force

It is ideal to Keep the AoA which shows Largest Lift force-Drag force rate

- What is <u>Angle of Attack</u> (AoA: α)
- Large AoA gives not only high lift force(L) but also high drag force(D)
- Larger AoA is trigger of the stall (separation flow)
- It is ideal to Keep the AoA which shows Largest Lift-Drag rate (L/D or C_L/C_D)

 C_L : Lift Coefficient C_D : Drag Coefficient

It is ideal to Keep the AoA which shows Largest Lift force-Drag force rate

- What is Angle of Attack (AoA: α)
- Large AoA gives not only high lift force(L) but also high drag force(D)
- Larger AoA is trigger of the stall (separation flow)
- It is ideal to Keep the AoA which shows Largest Lift-Drag rate (L/D or C_L/C_D)

 C_L : Lift Coefficient C_D : Drag Coefficient

What is Angle of Attack (AoA: α)

The angle of attack is the angle between the chord line of an airfoil and the oncoming air.

It is ideal to Keep the AoA which shows Largest Lift force-Drag force rate

- What is Angle of Attack (AoA: α)
- Large AoA gives not only high lift force(L) but also high drag force(D)
- Larger AoA is trigger of the stall (separation flow)
- It is ideal to Keep the AoA which shows Largest Lift-Drag rate (L/D or C_L/C_D)

 C_L : Lift Coefficient C_D : Drag Coefficient

Large AoA gives not only high lift force(L) but also high drag force(D)

It is ideal to Keep the AoA which shows Largest Lift force-Drag force rate

- What is Angle of Attack (AoA: α)
- Large AoA gives not only high lift force(L) but also high drag force(D)
- Larger AoA is trigger of the stall (separation flow)
- It is ideal to Keep the AoA which shows Largest Lift-Drag rate (L/D or C_L/C_D)

 C_L : Lift Coefficient C_D : Drag Coefficient

It is ideal to Keep the AoA which shows Largest Lift-Drag rate (L/D or C_L/C_D)

[Carry out the performance test of airfoil in all AoA range]

Large AoA gives not only high lift force(L) but also high drag force(D)

Horizontal axis wind turbine rotation mechanism

Horizontal axis wind turbine rotation mechanism

Using Microsoft Power Point animation function

Altogether

"Large Lift-Drag rate" means "Wind turbine rotate"

Why the wind turbine blade is twisted?

Why the wind turbine blade is twisted?

There is velocity difference between at the root and the tip of the blade

The image of AoA from tip to root is...

Optimized the AoA(α) for each blade position v=r@[m/s] Blade plane of Wind rotation W[m/s] Apparent wind V[m/s]

=the wind turbine blade is twisted

If the rotor blade rotation stopped...

② give more peripheral velocity[starting torque]

This slide is using Microsoft PowerPoint animation

Wind stops or gust of wind blew!

If wind stops

If wind stops

AoA(a) get small => Lift will reduce

If wind stops

AoA(a) get small => Lift will reduce

Windblast [gusty wind]

Always control the pitch angle but

Wind turbine blade is heavy and pitch angle control is slower pace

Performance of wind turbine blade is not good for sensitive to AoA

What is Reynolds number? What is Re?

The Reynolds number is,,,

- -> Dimensionless quantity
- -> The ratio of inertial forces to viscous forces within a fluid.

-> Used in the scaling of similar but different-sized flow situations, such as between an aircraft model in a wind tunnel and the full size version.

In the case of wind turbine

