科目		CAE演習 (Exercise of Computer Aided Engineering)				
担当教員		田邉 大貴 准教授, 鈴木 隆起 教授				
対象学年等		機械工学科·5年E組·前期·必修·1単位【演習】(学修単位I)				
学習·教育目標		A3(20%), A4-M1(40%), A4-M2(40%)				
授業の 概要と方針		製品の開発には,コンピューター技術を用いての設計やシミュレーションが必要不可欠となる.本科目では,CAE(Computer Aided Engineering)における一連の流れを理解するために,簡単なモデルに対してCADによる設計を行うとともに,構造解析(FEM)および流体解析(CFD)の概要の理解と,それらの演習を実施する.				
		到 達 目 標	達原		到達目標別の評価方法と基準	
1	【A3】CAEの概要について理解し,有限要素法,有限体積法などの解析手法の概要について理解する.				CAEの概要に対する理解度および,有限要素法,有限体積法などの解析手法に対する理解度を課題などで評価する.	
2	【A3】CADソフトを用いて簡単な3D図面を書くことができる.				CADソフトを用いた3D図面の作成能力を提出課題で評価する.	
3	[A4-M1]構造解析(FEM)の概要を理解し,簡単な構造解析を実施できる.				構造解析(FEM)に対する具体的な例題に対して解析を実施するとともに,提出課題で評価する.	
4	[A4-M2]流体解析(CFD)の概要を理解し,簡単な熱流体解析を実施できる.				流体解析(CFD)に対する具体的な例題に対して解析を実施するとともに,提出課題で評価する.	
5						
6						
7						
8						
9						
10						
総合評価		成績は,課題100% として評価する.課題は,3D図面作成課題を20%,FEM解析課題を40%,CFD解析課題を40%として評価する.100点満点で60点以上を合格とする.				
テキスト		プリントおよびwebテキスト				
参考書		「基礎からのFreeCAD」:坪田 遼((I・O BOOKS) 「FreeCADで始めるCAE設計入門」: Amazon Services International, Inc. 「OpenFOAMによる熱移動と流れの数値解析」:春日悠・今野雅(森北出版)				
関連科目		材料力学I(3年),材料力学II(4年),材料力学III(5年),流体力学I(4年),流体力学II(5年),熱力学I(4年),熱力学II(5年),熱流体工学(5年)				
履修上の 注意事項		材料力学,熱力学,流体力学の基礎的事項を理解していること.				

	授業計画(CAE演習)						
	テーマ	内容(目標・準備など)					
1	授業概要および,有限要素法,有限体積法などの解析手法の概要説明	CAEの概要や用途、一連の解析フローについて理解する。また、CAEを行う上で必要となる,基本的な数値解析的手法の概要について理解する。また,CAEとAI・データサイエンス分野の融合領域について説明する.					
2	3次元CADによるモデル作成1	具体的な形状モデルの作成を行う.					
3	3次元CADによるモデル作成2	具体的な形状モデルの作成を行う.					
4	3次元CADによるモデル作成3	具体的な形状モデルの作成を行う.					
5	3次元CADによるモデル作成4	具体的な形状モデルの作成を行う.					
6	有限要素法による構造解析1	有限要素法による構造解析を,具体的な形状に対して実施し,解析結果を理解する.					
7	有限要素法による構造解析2	有限要素法による構造解析を,具体的な形状に対して実施し,解析結果を理解する.					
8	有限要素法による構造解析3	有限要素法による構造解析を,具体的な形状に対して実施し,解析結果を理解する.					
9	有限要素法による構造解析4	有限要素法による構造解析を,具体的な形状に対して実施し,解析結果を理解する.					
10	有限要素法による流体解析1	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
11	有限要素法による流体解析2	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
12	有限要素法による流体解析3	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
13	有限要素法による流体解析4	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
14	有限要素法による流体解析5	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
15	有限要素法による流体解析6	有限体積法による流体解析を,具体的な形状に対して実施し,解析結果を理解する.					
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
備考	中間試験および定期試験は実施しない.						