科目		数学 I (Mathematics I)				
担当教員		児玉 宏児 教授				
対象学年等		電気工学科·3年·通年·必修·4単位 (学修単位 I)				
学習·教育目標						
授業の 概要と方針		理工学系の基礎となるテイラー展開,偏微分,重積分,微分方程式について講義する.概念の理解に重点をおき,基本問題,応用問題の演習で基礎を固め,さらに応用力をつけて運用能力を高める.				
		到 達 目 標	達成	龙度	到達目標別の評価方法と基準	
1	【A1】ロピタルの定理,テイラーの定理などを使って,関数の極限値,近似値などの計算ができる.				中間試験・定期試験、レポートで行う.	
2	【A1】分数関数,三角関数などの様々な関数の不定積分を求めることができる.				中間試験・定期試験、レポートで行う.	
3	【A1】定積分を使って,面積,体積,曲線の長さが計算できる.				中間試験・定期試験、レポートで行う.	
4	[A1]偏導関数の計算ができ,偏導関数を応用し,極値や条件付き極値を求めることができる.				中間試験・定期試験、レポートで行う.	
5	[A1]重積分の計算ができる.				中間試験・定期試験、レポートで行う.	
6	【A1】微分方程式とその解について理解し,1階微分方程式,2階微分方程式が解ける.				中間試験・定期試験、レポートで行う.	
7						
8						
9						
10						
総合評価		成績は,試験65% レポート25% 前中間試験代替課題10% として評価する.試験成績は中間試験と定期試験の平均とする. 100点満点で60点以上を合格とする.				
テキスト		「新版数学シリーズ 微分積分 II」: 岡本 和夫 編 (実教出版) 「新版数学シリーズ 微分積分 II演習」: 岡本 和夫 編 (実教出版)				
参考書		「新編 高専の数学3 (第2版)」:田代 嘉宏 著 (森北出版) 「新課程チャート式 基礎と演習 数学III」:チャート研究所 編著(数研出版) 「入門 微分積分」:三宅 敏恒 著 (培風館) 「大学・高専生のための解法演習 微分積分II」:糸岐 宣昭 他 著 (森北出版) 「高専テキストシリーズ 微分積分2 問題集」:上野健爾 監修 (森北出版)				
関連科目		1,2年の数学I,数学II				
履修上の 注意事項		・時間に余裕がある場合には,発展的な話題を扱うこともある.・レポートは夏季休業前・冬季休業前等,適宜課す.・参考書に挙げた書籍は全部揃える必要はない.・4月の最初の授業時に2年時までの数学の内容に関する実力試験を実施し,点数を成績に加味する.・前年度の学年末休業前に課された課題の成績をレポートの成績に加味する.				

授業計画(数学 I)						
	テーマ	内容(目標・準備など)				
1	曲線の媒介変数方程式、極座標と曲線	媒介変数で表示された曲線の概形を調べる方法を学習する.				
2	陰関数の微分法	陰関数の微分法について理解し,計算をする.				
3	不定形の極限値	ロピタルの定理を用いて不定形の極限を求める.				
4	テイラーの定理	テイラー展開,マクローリン展開を使って関数の近似式を求める.				
5	有理関数の不定積分	有理関数の不定積分を求める.				
6	三角関数の有理式の不定積分	三角関数の有理式の不定積分を求める.				
7	無理関数の不定積分	無理関数の不定積分を求める.				
8	不定積分	不定積分の全般の復習				
9	面積	定積分を使って図形の面積を計算する.				
10	曲線の長さ	定積分を使って曲線の長さを計算する.				
11	体積	定積分を使って立体の体積を計算する.				
12	広義積分	広義積分について理解し,広義積分を計算する.				
13	2変数関数	2変数関数の概念を理解し、極限値や連続性を調べる.				
14	偏導関数,合成関数の偏導関数	偏導関数について理解し、様々な偏導関数の計算をする.				
15	試験返却,全微分と接平面	定期試験の答案を返却し,解答を解説する.全微分と接平面について理解し,接平面の方程式を求める.				
16	2変数関数の極大・極小	偏導関数を使って極値の計算をする.				
17	陰関数定理	陰関数定理について理解し,極値や特異点を求める.				
18	条件付き極大・極小	条件付きの関数の極値について理解し,極値を求める.				
19	2重積分	2重積分について理解し、計算をする.				
20	積分の順序変更	積分順序の変更を理解し, 計算をする.				
21	変数変換	変数変換により2重積分の計算をする.				
22	体積	2重積分を使って体積を求める.				
23	中間試験	中間試験を行う.				
24	試験返却,微分方程式と解	中間試験の答案を返却し,解答を解説する.微分方程式と一般解,特殊解,特異解について理解する.				
25	変数分離形	変数分離形の微分方程式を解く.				
26	同次形	同次形の微分方程式を解く.				
27	線形微分方程式	線形微分方程式を解く				
28	2階微分方程式	2階微分方程式を1階微分方程式に直して解く.				
29	定数係数2階同次線形微分方程式	定数係数2階同次線形微分方程式を解く.				
30	試験返却,問題演習	定期試験の答案を返却し、解答を解説する、微分方程式に関する問題演習を行う.				
備考	前期定期試験,後期中間試験および後期定期試験を実施する.					