				神戸市立工業高等専門学校 2017年度シラバス		
科 目 電子工学序論 (Introduction to Electronic Engineering)						
担当教員		長谷 芳樹 准教授				
対	象学年等	子工学科·1年·通年·必修·2単位 (学修単位 I)				
学習·教育目標		A4-D1(100%)				
授業の 概要と方針		電気回路から電磁気学までの基礎事項を理解するとともに、各種の電子デバイスについてその構造と電子回路素子としての動作の基礎に触れることで、電子システム系科目学習への導入とする.				
		到 達 目 標	達成度	到達目標別の評価方法と基準		
1	【A4-D1】単位 使えるようにな	の接頭語の意味を理解し,使用頻度の高いものについては こる.		単位の接頭語の意味を理解し,使用頻度の高いものについては使えるようになっているかを前期中間試験および授業中の演習と課題で評価する.		
2	【A4-D1】オームの法則の意味を理解し,直流回路の基本的な計算ができる.			オームの法則の意味を理解し,直流回路の基本的な計算ができるかを前期中間試験および授業中の演習と課題で評価する.		
3	【A4-D1】重ね合わせの理およびキルヒホッフの法則を用いて簡単な直流 回路の計算ができる.			重ね合わせの理およびキルヒホッフの法則を用いて簡単な直流回路の計算ができるかを前期定期試験と後期中間試験および授業中の演習と課題で評価する.		
4	【A4-D1】電流 ることができる	でによる発熱作用から電力と電力量について理解し,計算す 5.		電流による発熱作用から電力と電力量について理解し,計算することができるかを後期中間試験および授業中の演習と課題で評価する.		
	「A4-D1]磁気と静電気との違いを理解し,それぞれを応用した機器について説明することができる。					

2	【A4-D1】オームの法則の意味を理解し,直流回路の基本的な計算ができる.			への法則の意味を理解し,直流回路の基本的な計算ができるかを前期中 験および授業中の演習と課題で評価する.		
3	【A4-D1】重ね合わせの理およびキルヒホッフの法則を用いて簡単な直流 回路の計算ができる.		重ねができ	合わせの理およびキルヒホッフの法則を用いて簡単な直流回路の計算 きるかを前期定期試験と後期中間試験および授業中の演習と課題で評 る.		
4	【A4-D1】電流による発熱作用から電力と電力量について理解し,計算することができる.			こよる発熱作用から電力と電力量について理解し,計算することができる 後期中間試験および授業中の演習と課題で評価する.		
5	【A4-D1】磁気と静電気との違いを理解し,それぞれを応用した機器について説明することができる.			と静電気との違いを理解し、それぞれを応用した機器について説明する いできるかを後期定期試験および授業中の演習と課題で評価する.		
6	【A4-D1】静電容量という量を理解し,簡単な並行平板構造での容量計算 ,および容量の直列・並列接続時の容量計算ができる.			容量という量を理解し,簡単な並行平板構造での容量計算,および容量 対・並列接続時の容量計算ができるかを後期定期試験および授業中の と課題で評価する.		
7	【A4-D1】磁気現象(フレミングの法則,電磁誘導,ヒステリシス特性)について説明ができる.		磁気きるな	現象(フレミングの法則,電磁誘導,ヒステリシス特性)について説明がで いを後期定期試験および授業中の演習と課題で評価する.		
8	【A4-D1】半導体という物質を知り,どんな性質をもっているか説明できる.			体という物質を知り,どんな性質をもっているか説明できるかを後期定期 および授業中の演習と課題で評価する.		
9	【A4-D1】半導体素子であるダイオードの基本的な動作を説明できる.			体素子であるダイオードの基本的な動作を説明できるかを後期定期試 はび授業中の演習と課題で評価する.		
10						
総合評価		成績は,試験90% 授業中の演習と課題10% として評価する.試験成績は4回の試験(前期中間,定期試験と後期中間,定期試験)の平均点とする.100点満点で60点以上を合格とする.				
テキスト		「電子工学入門」大豆生田利章(電気書院) 「ポイントマスター 電気基礎(上)トレーニングノート」加藤,神谷,山本,岡安,各務,久永,松村(コロナ社)				
参考書		「絵で見る電気の歴史」岩本洋(オーム社) 「電気回路(1)」早川義晴・松下祐輔・茂木仁博(コロナ社) 「例題で学ぶやさしい電気回路 直流編」堀浩雄(森北出版) 「図でよくわかる電気基礎」高橋寛監修(コロナ社) 「よくわかる電子基礎」秋富勝,菅原彪(東京電機大学出版局)				
関連科目 電気回路I,電気磁気学I,D1電子工学実験実習						
履修上の この科目は専門科目の電気回路I,電気磁気学Iの基礎であるのでしっかり学習すること.また,電子工学等注意事項 に実験をして確かめることもあるので,実験と合わせて学習すること.						

	授業計画(電子工学序論)							
	テーマ	内容(目標・準備など)						
1	電気現象と電子工学技術史,SI単位系,単位と指数表現	電子工学科におけるこの講義の位置づけについて概説する。また,電気現象について,歴史的にどのような発見がなされ,応用されてきたかを説明する。さらに,SI単位系と接頭記号 $(M,k,m,\mu$ など)についても説明する。						
2	単位の変換と答案の書き方,直流電気回路とオームの法則,電荷・電流の関係	電子工学で用いる様々な単位の変換と、第三者へ伝えやすい単位の記述方法について説明する。また、電気回路の基本である直流電源と抵抗で構成される直流回路について、オームの法則および電荷と電流の関係について説明する.						
3	直列回路·並列回路·直並列回路(1)	直流回路で用いる抵抗を複数本として,直列に接続した場合,並列に接続した場合,直列と並列を組み合わせた場合について全体の抵抗値(合成抵抗)がどのようになるか。また,それらを電気回路に用いたとき,それぞれの端子間電圧,素子に流れる電流が幾らになるか求める.						
4	直列回路·並列回路·直並列回路(2)	3週目に引き続いておこなう.						
5	直列回路·並列回路·直並列回路(3)	4週目に引き続いておこなう.						
6	関数電卓の使い方	関数電卓は非常に便利な道具であるが、その動作を充分に把握して使用しなければならない.ここでは電子工学科の講義および 実験において必要な関数電卓の操作について解説する.						
7	電子工学概説・復習と演習	ここまでに学んできた内容に関連した技術系雑誌や学術論文などを用いて,最新の業界や技術動向について概説する.また,1週目から6週目の内容について,復習するとともに具体的な演習問題を解き理解を深める.						
8	前期中間試験	1週目から6週目の内容について,理解度を確認する試験をおこなう.						
9	試験の解答とこれまでの注意点確認	前期中間試験の解説およびこれまで学んできたことの確認をおこなう.						
10	重ね合わせの理(1)	複数の電源(電圧源,電流源)をもつ直流回路では,電源を分けて考えることができ,最終的に各素子に流れる電流は,それぞれの電源で考えたときに各素子に流れる電流の総和で求まる.このことを例題を通して理解し,実際に計算できるようにする.						
11	重ね合わせの理(2)	10週目に引き続いておこなう.						
12	重ね合わせの理(3)	11週目に引き続いておこなう.						
13	電気抵抗と抵抗率、導電率	電気抵抗が抵抗体の長さに比例しその断面積に反比例することを合成抵抗の原理より理解するとともに、材料により単位長さ単位面積あたりの抵抗値(抵抗率)が異なることを知る.一般の金属では、温度に比例して抵抗値が変化することを知る.抵抗とは逆の概念で、電気の通しやすさとして、導電率の概念を身につける.						
14	消費電力と発生熱量(ジュールの法則)	物体に電流が流れるとエネルギーを消費することになる.身の回りの電気機器でもそれぞれ消費電力の表示があることに気がつく、回路での消費電力の定義を知り、実際に求めてみる.また、電気エネルギーが消費されて熱エネルギーに替わり暖かくなる(ジュール熱).この熱により、どれくらい水が温かくなるか考えてみる.						
15	復習と演習	10週目から14週目の内容について,復習するとともに具体的な演習問題を解き理解を深める.						
16	前期定期試験の解答とこれまでの注意点確認	前期定期試験の解説およびこれまで学んできたことの確認をおこなう.						
17	電圧計と電流計(倍率器,分流器)	『テスター・ハック』をおこなう.電気磁気現象を用いて電流,電圧を測定する計器には抵抗が含まれているが,それぞれの計器に補助的な回路(抵抗)を追加することにより,測定できる範囲を変える事ができる.なお,この原理を用いた「テスター」は電子工学実験実習で製作する.						
18	キルヒホッフの法則(1)	回路計算を行ううえで,もっとも重要な基本式であるキルヒホッフの第1法則(電流則)と第2法則(電圧則)について理解し,実際 の直流回路網に応用できるようにする.						
19	キルヒホッフの法則(2)	18週目に引き続いておこなう.						
20	キルヒホッフの法則(3)	19週目に引き続いておこなう.						
21	直流ブリッジ回路	4本の抵抗をひし形に組み合わせた構造をブリッジという。直流ブリッジでは、2組の直列抵抗の比が同じであれば並列に接続した2組の中点の電位は等しくなり、その間に抵抗(検流計)などを接続しても電流は流れない、このような状態を平衡状態といい、この条件を利用して抵抗の測定などに利用される、この原理を学ぶ、						
22	復習と演習	17週目から21週目の内容について,復習するとともに具体的な演習問題を解き理解を深める.						
23	後期中間試験	17週目から21週目の内容について,理解度を確認する試験をおこなう.						
24	試験の解答とこれまでの注意点確認・静電気と磁気の現象とその利用	後期中間試験の解説およびこれまで学んできたことの確認をおこなう。身の回りで起こる静電気の問題を考え、静電気を応用した機器についても調べる。また,磁気についても同様に身の回りで応用されているものを調べてみる。						
25	クーロンの法則(電気,磁気)	電荷,磁荷(極)によるクーロン力がどのように表現されるか知る(類似性).クーロン力の解釈として,場という概念を理解する.これらのクーロン力はほとんど同じように表現されるが,実際の電荷と磁荷の異なることについて学ぶ.						
26	静電気の応用とコンデンサ	平行平板電極間に誘電体(絶縁体)をはさむことによりコンデンサとなることを理解し,その静電容量が電極間の距離に反比例し, 面積に比例することを学ぶ.また,電極間にはさむ誘電体についてもどのような種類のものが使われているのか学ぶ.						
27	磁気現象1(右ねじの法則,フレミングの法則)	電流によって磁界が発生することと発生する磁界と電流の方向との関係を知る(右ねじの法則).磁界下に電流が流れた導線に働く力について考える(フレミングの左手の法則).						
28	磁気現象2(電磁誘導,磁性体)	フレミングの左手の法則と逆の考えで、磁界中に置かれた導体が磁界を横切ると起電力を発生することを知る(フレミングの右手の法則)、これらの磁気的な現象の応用として、発電機、トランスなどがあり、その動作原理を理解する。また、強磁性体の磁化現象(ヒステリシス現象)などについても理解する。						
29	半導体の種類と特性、半導体の電気伝導	導体と絶縁体の中間的な物質として半導体がある、半導体は抵抗値が導体と絶縁体の中間であるというだけでなく、いろいろな 組み合わせ(不純物を添加したもの)でいろいろな特性をもつ、現在の電子デバイスはこの半導体の特性を活かした素子によって 成り立っている。この半導体の構造、特性について学習する。						
30	PN接合とダイオードの電気的特性	ダイオードの構造はPN接合である.P,Nはそれぞれ電荷を運ぶもの(キャリヤ)のうち,多数を占めているのが,プラス電荷(正孔)であればP形,マイナス電荷(電子)であればN形と呼ばれる.そのP形とN形の素子を接合させ電圧を印加したとき,その極性によって電流の流れ方が異なる.その性質について考える.						
備老	前期,後期ともに中間試験および定期試験を実施する.							

前期,後期ともに中間試験および定期試験を実施する.