					仲尸巾立工業局寺専門子校 2010年度ンプバス	
	科 目 応用数学II (Applied Mathematics II)					
担当教員		野並 賢 准教授				
対象学年等		都市工学科·4年·通年·必修·2単位(学修単位III)				
学習·教育目標		A1(100%) JABEE基準 (c),(d)				
授業の 概要と方針		前期は、一階常微分方程式、定数係数二階線形同次常微分方程式、定数係数二階線形非同次常微分方程式を講義し、その解法を学習する、後期は、フーリエ級数、ラプラス変換の定義を講義し、その解法を学習する。				
		到 達 目 標	達成	度	到達目標別の評価方法と基準	
1	【A1】変数分离解する.	推形,同次形,完全形,線形の一階常微分方程式の解法を理			変数分離形,同次形,完全形,線形の一階常微分方程式の解法が理解できて へるか中間試験(前期)・レポートで評価する.	
2	【A1】一階常符	数分方程式の工学的応用例を通じ,その解法を理解する.			- 階常微分方程式の工学的応用例の解法が理解できているか中間試験(前間)レポートで評価する.	
3	[A1]定数係数二階線形同次常微分方程式の定義を理解し、その工学的応用例を通じてその解法を理解する.				z数係数二階線形同次常微分方程式の解法を理解できているか定期試験(前期)・レポートで評価する.	
4	【A1】定数係数二階線形非同次常微分方程式の解法を理解する.				E数係数二階線形非同次常微分方程式の解法を理解できているか定期試 食(前期)・レポートで評価する.	
5	【A1】フーリエ級数の定義を理解し、その工学的応用例を通じてその解法 を理解する.				アーリエ級数の定義,およびその工学的応用例を通じてその解法を理解できているか中間試験(後期)・レポートで評価する.	
6	【A1】ラプラス変換の定義を理解し、その工学的応用例を通じてその解法 を理解する.				プラス変換の定義,およびその工学的応用例を通じてその解法を理解できているか定期試験(後期)・レポートで評価する.	
7						
8						
9						
10						
総合評価		成績は,試験85% レポート10% 4年次最初に行う実力試験5% として評価する.100点満点とし60点以上を合格とする.試験成績は中間試験,定期試験の平均点とする.レポート課題は,提出期限を厳守すること(提出遅れは,原則,評価対象外).				
テキスト		「書き込み式 工学系の微分方程式入門」:田中聡久(コロナ社) 「新 応用数学」:佐藤志保 他 著(大日本図書) (応用数学Iと共通) 「新 応用数学 問題集」:嶋野 和史 他 著(大日本図書) (応用数学Iと共通)				
参考書		「フーリエ解析I」:馬場敬之・高杉豊(マセマ) 「ラプラス変換」:馬場敬之・高杉豊(マセマ) 「今日から使える微分方程式」:飽本 一裕(講談社)				
関連科目		数学I,応用数学I				
履修上の 注意事項		履修者には,到達目標を達成するために努力する義務があります.				

授業計画(応用数学II)						
	テーマ	内容(目標・準備など)				
1	オリエンテーション,実力試験	本講義の授業計画について説明する.3年次で学習した数学Iの内容について実力試験を実施する.				
2	変数分離形·同次形一階常微分方程式	一階常微分方程式において,変数分離形と同次形について解を得ることができる.				
3	完全形一階常微分方程式	∂ P/ ∂ y= ∂ Q/ ∂ xが成立つとき,完全形微分方程式であるという.完全形の関係式を用いて積分を行えば,解を得ることができる.				
4	積分因数を用いた完全形一階常微分方程式	両辺に任意の関数を掛けると完全形になる場合に、その関数を積分因数という.積分因数を求めれば、解を得ることができる.				
5	線形一階常微分方程式	dy/dx+P(x)y=Q(x)で与えられる微分方程式を線形微分方程式という.公式を用いると,一般解を得ることができる.				
6	一階常微分方程式の応用例	一階常微分方程式で表わされる応用例を取り上げ,現象を微分方程式で表現する方法を考え,実際に解くことができる.				
7	一階常微分方程式の応用例	一階常微分方程式で表わされる応用例を取り上げ,現象を微分方程式で表現する方法を考え,実際に解くことができる.				
8	中間試験	中間試験を実施する.				
9	二階線形同次常微分方程式	一つの独立変数のみの関数に関する二階の導関数を含んでいる方程式を二階常微分方程式という.y1,y2が微分方程式の解であるとき,一般解はy3=c1y1+c2y2で与えられる.				
10	定数係数二階線形同次常微分方程式	微分方程式の係数が定数のとき,定数係数二階線形同時常微分方程式という.補助方程式の根が,2つの実根,重根,および虚数根の場合に応じて,一般解がそれぞれ与えられる.				
11	二階線形非同次常微分方程式	微分方程式の右辺がある関数であるとき、この微分方程式を非同次常微分方程式であるという。一つの特殊解が既知のとき、および二つの特殊解が既知の時の一般解を理解する。				
12	定数係数二階線形非同次常微分方程式	徽分演算子法の基礎を理解する.右辺がexp(mx)で与えられる微分方程式に微分演算子法を適用したときの定理を理解する.				
13	定数係数二階線形非同次常微分方程式	右辺が定数や,exp(mx)g(x)で与えられる微分方程式に微分演算子法を適用したときの定理を理解する.				
14	定数係数二階線形非同次常微分方程式	右辺がsin(mx),cos(mx)で与えられる微分方程式に微分演算子法を適用したときの定理を理解する.				
15	定数係数二階線形非同次常微分方程式	右辺が多項式で与えられる微分方程式に微分演算子法を適用したときの定理を理解する.				
16	フーリエ級数	f(x)が区間2πの周期関数であるとき,三角関数の級数に展開することができる.				
17	フーリエ級数の例	いくつかの周期関数に対して、フーリエ級数を求めることができる.				
18	半区間フーリエ級数	長さπの区間でフーリエ級数に展開したものを半区間フーリエ級数を理解する.				
19	区間フーリエ級数	区間-L <x<lで定義された関数のフーリエ級数を理解する.< th=""></x<lで定義された関数のフーリエ級数を理解する.<>				
20	フーリエ級数の応用	フーリエ級数の単純ばりのたわみの解法への応用例を理解する.				
21	フーリエ級数の応用	フーリエ級数の偏微分方程式への応用例を理解する.				
22	フーリエ級数の応用	演習問題を通じて、フーリエ級数を理解する.				
23	中間試験	中間試験を実施する.				
24	ラプラス変換の定義	ラプラス変換の定義を理解する.				
25	ラプラス変換の諸定理	ラプラス変換における諸定理を証明しながら理解する.				
26	ラプラス変換の諸定理	ラプラス変換における諸定理を証明しながら理解する.				
27	常微分方程式の解法	常微分方程式の解法を理解する。				
28	ヘビサイドの展開定理	ヘビサイドの展開定理を例題を通じて理解する.				
29	ラプラス変換の応用	演習問題を通じて、ラプラス変換を理解する.				
30	ラプラス変換の応用	演習問題を通じて、ラプラス変換を理解する.				
/±	木科目の修得には 60 時間の授業の受講と 30 時間の自己学習が必要である					

備本科目の修得には,60時間の授業の受講と30時間の自己学習が必要である。 考前期,後期ともに中間試験および定期試験を実施する.