| · · · · · · · · · · · · · · · · · · ·                                                                         | 科目                                     | 電子工学実験実習 (Laboratory Work in El                                                                                                                                                                                                      | lectroni | アイス (中戸市立工業局寺専門学校 2015年度シラハス c Engineering)                            |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------|--|--|
| 担当教員                                                                                                          |                                        | 尾山 匡浩 准教授,戸崎 哲也 教授,藤本 健司 准教授, 笠井 正三郎 教授                                                                                                                                                                                              |          |                                                                        |  |  |
| 対象学年等                                                                                                         |                                        | 電子工学科・4年・通年・必修・4単位(学修単位I)                                                                                                                                                                                                            |          |                                                                        |  |  |
| 学習·教育目標                                                                                                       |                                        | A4-D1(10%) A4-D3(10%) A4-D4(20%) B1(10%) C1(10%) C2(10%) C4(20%) D1(<br>10%) JABEE基準1(1) h)                                                                                                                                          |          |                                                                        |  |  |
| 授業の<br>概要と方針                                                                                                  |                                        | 電子工学実験実習1~3年で習得した電子工学に関する基礎原理や測定技術,また,座学を通じて修得した知識を活用し,より高度な実験技術を修得する.前期は1クラスを10程度の班に分け,エンジニアリングデザイン能力を養うために,班単位で各目的を達成出来るように構想から実現まで一貫したテーマに取り組む.後期は4班に分け,班単位で実験実習を行う.4班並列に異なる実験実習を行うため,各班で実施する実験実習テーマの週は異なるが,半年間で行う実験実習のテーマは同じである. |          |                                                                        |  |  |
|                                                                                                               |                                        | 到 達 目 標                                                                                                                                                                                                                              | 達成度      | 到達目標毎の評価方法と基準                                                          |  |  |
| 1                                                                                                             | 【B1】実験内                                | 容を適切に文章で表現できる.                                                                                                                                                                                                                       |          | 適切な文章表現で的確に実験報告書が作成できているかを実験報告書で評価する。                                  |  |  |
| 2                                                                                                             | 【C1】実験結                                | 1】実験結果を解析し適切に図・表で表現できる.                                                                                                                                                                                                              |          | 実験結果を解析し適切に図・表で表現できるかを実験報告書で評価する・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   |  |  |
| 3                                                                                                             | 【C2】与えられた課題について解決方法を提示できる.             |                                                                                                                                                                                                                                      |          | 前期実験課題のプレゼンテーションにて評価する.                                                |  |  |
| 4                                                                                                             | 【C4】グループで協調して実験実習に挑み,期限内に実験報告書を提出できる.  |                                                                                                                                                                                                                                      |          | 実験への取り組みと達成度,また,実験報告書が期限内に提出されているかどうかで評価する.                            |  |  |
| 5                                                                                                             | 【D1】機器の取り扱いに注意し,安全に実験に取り組むことが出来る.      |                                                                                                                                                                                                                                      |          | 機器の取り扱いに注意し、安全に実験に取り組むことが出来るかどうか<br>、実験への取り組みと達成度で評価する。                |  |  |
| 6                                                                                                             |                                        | 単なアナログ回路の動作原理が理解できる.また,簡単な<br>が設計できる.                                                                                                                                                                                                |          | 簡単なアナログ回路の動作原理が理解できているか,また,回路の設計が出来るかを実験の取り組みと達成度及び実験報告書で評価する.         |  |  |
| 7                                                                                                             | 【A4-D3】簡単なシーケンス制御回路を構築できる.             |                                                                                                                                                                                                                                      |          | 各種センサとPLCを用いて簡単なシーケンス制御回路が実現できるか,実験の取り組みと達成度および実験報告書で評価する.             |  |  |
| 8                                                                                                             | 【A4-D4】原始プログラムが目的プログラムに変換される仕組みが理解できる。 |                                                                                                                                                                                                                                      |          | 小数命令セットを持つ仮想CPUのコンパイラを作成することにより,到達目標が達成できているか実験の取り組みと達成度および実験報告書で評価する. |  |  |
| 9                                                                                                             | 【A4-D4】各種サーバの仕組みを理解し,LANの構築を行うことができる.  |                                                                                                                                                                                                                                      |          | 各種サーバの仕組みを理解し,LANを構築できるか,実験の取り組みと<br>達成度および実験報告書で評価する.                 |  |  |
| 10                                                                                                            |                                        |                                                                                                                                                                                                                                      |          |                                                                        |  |  |
| 成績は,実験報告書50% 各テーマごとの取り組みと達成度50% として評価する.前期と後期をそれぞれ つとし,100点満点で60点以上を合格とする.なお,前期に行われるプレゼンテーションに関しては,と達成度に含まれる. |                                        |                                                                                                                                                                                                                                      |          |                                                                        |  |  |
| テキスト                                                                                                          |                                        | 「電子工学科・第4学年実験実習シラバス(計画書)」:プリント<br>「電子工学科・第4学年実験実習指導書」:プリント<br>「電子工学科・安全の手引き」:プリント                                                                                                                                                    |          |                                                                        |  |  |
| 参考書                                                                                                           |                                        | 「知的な科学・技術文章の書き方」:中島利勝,塚本真也(コロナ社)<br>「神戸高専安全マニュアル」:神戸高専編                                                                                                                                                                              |          |                                                                        |  |  |
| 関連科目                                                                                                          |                                        | 電子工学実験実習(本科5年), その他実験テーマの関連教科                                                                                                                                                                                                        |          |                                                                        |  |  |
| 履修上の<br>注意事項                                                                                                  |                                        | 実験報告書が1通でも未提出の場合,または提出期限に遅れた実験報告書が全提出報告書の1/3を超える場合は原則として不合格とする.なお,詳細は配布する実験計画書と第1週目のガイダンスで説明する.前期の実験において機器の組み立てが終わらなかった学生については夏季休業中の学習支援期間を利用して行うこととする.                                                                              |          |                                                                        |  |  |

|        | ゲーマ だ                                                                                                                             | 業計画1(電子工学実験実習)<br>                                                                                                                                   |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 回<br>1 | ガイダンス,安全教育,前期実験テーマの概要説明                                                                                                           | 内容(目標,準備など)<br>電子工学実験実習シラバス(実験実習計画書前期分)を配布し,実験の進め方,評価方法,レポートの作成・提出方法,班構成,実施日などの説明をする.また,当学年の安全に関する全般的な注意事項を説明する.その後,テーマの概要とテーマに関係する安全に対する注意事項の説明を行う. |  |
| 2:     | 基礎実験                                                                                                                              | PICマイコンによる車輪型ロボットの概要説明とアセンブラブログラミングの復習を行う.                                                                                                           |  |
| 3      | 基礎実験                                                                                                                              | プレッドボードを用いた基礎実験を行う.                                                                                                                                  |  |
| 4      | 基礎実験                                                                                                                              | ブレッドボードを用いた基礎実験を行う                                                                                                                                   |  |
| 5      | エンジニアリングデザインについての講演及び説明                                                                                                           | 企業で実際に開発業務に携わっている人に来て頂き,エンジニアリングデザインについて講演を行って頂く.その後,今後のことについて簡単に説明を行う.                                                                              |  |
| 6      | 新規製作ロボットの構想デザイン                                                                                                                   | 与えられた仕様に対する要求の分析と実現方法の検討を行う.                                                                                                                         |  |
| 7      | 部品選定・回路設計                                                                                                                         | システム構成の検討を検討し,部品の選定や回路設計を行う.またこの際にハードウェアの部門とソフトウェアの<br>部門に班員を分け手分けして作業を行う.                                                                           |  |
| 8      | 部品発注・回路作成                                                                                                                         | 7回目に選定した部品の発注を行う.また,ハードウェア部では次週に行うエッチングのために基板のレイアウトを行い,ソフトウェア部ではプログラムのチャート化などを行う.                                                                    |  |
| 9      | エッチング及び,製作                                                                                                                        | 作成した回路図を基にエッチングを行う.エッチング終了後はハードウェア部,ソフトウェア部共に製作を行う.                                                                                                  |  |
| 10     | 製作                                                                                                                                | 製作を行う.                                                                                                                                               |  |
| 11     | 製作                                                                                                                                | 製作を行う.                                                                                                                                               |  |
| 12     | 製作終了                                                                                                                              | 製作を終了する,製作終了の最低条件としてはオーバルコースを走破できることとする.                                                                                                             |  |
| 13     | 実装・調整,プログラムのデバッグ                                                                                                                  | 実装,調整,プログラムのデバッグ等を行う.                                                                                                                                |  |
| 14     | コンテスト                                                                                                                             | 各班ごとに,製作したものについてプレゼンを行い,競技により優劣を競う.                                                                                                                  |  |
| 15     | まとめ                                                                                                                               | 前期実験について,まとめを行う.                                                                                                                                     |  |
| 16     | シーケンス制御                                                                                                                           | ラダー図入力によるシーケンス制御の基礎                                                                                                                                  |  |
| 17     | シーケンス制御                                                                                                                           | ディスクリート素子によるシーケンス制御の実現                                                                                                                               |  |
| 18     | シーケンス制御                                                                                                                           | PLCによるシーケンス制御の応用                                                                                                                                     |  |
| 19     | ネットワーク環境の構築                                                                                                                       | WWWサーバ , ftpサーバの構築                                                                                                                                   |  |
| 20     | ネットワーク環境の構築                                                                                                                       | DNSサーバ,メールサーバの構築                                                                                                                                     |  |
| 21     | ネットワーク環境の構築                                                                                                                       | 小規模LANの構築                                                                                                                                            |  |
| 22     | アナログ回路の設計                                                                                                                         | 増幅回路の実験                                                                                                                                              |  |
| 23     | アナログ回路の設計                                                                                                                         | 発振回路の実験                                                                                                                                              |  |
| 24     | アナログ回路の設計                                                                                                                         | アクティブフィルタの実験                                                                                                                                         |  |
| 25     | コンパイラ                                                                                                                             | コンパイラ1(字句解析)                                                                                                                                         |  |
| 26     | コンパイラ                                                                                                                             | コンパイラ2 ( 構文解析1 )                                                                                                                                     |  |
| 27     | コンパイラ                                                                                                                             | コンパイラ3(中間コードおよび目的コード変換)                                                                                                                              |  |
| 28     | 特別実験1                                                                                                                             | 各担当教官が特別に準備した実験を行ったり,企業から講師を招いて講演会を開催したり,工場見学や電子産業に<br>関連した内容のピデオ鑑賞を行う.                                                                              |  |
| 29     | 特別実験2                                                                                                                             | 各担当教官が特別に準備した実験を行ったり,企業から講師を招いて講演会を開催したり,工場見学や電子産業に<br>関連した内容のピデオ鑑賞を行う.                                                                              |  |
| 30     | まとめ                                                                                                                               | 各大テーマごとに,実験とレポートの講評を行う.                                                                                                                              |  |
| 備考     | 中間試験および定期試験は実施しない.前期は10程度の班に分かれて,同時進行とする.後期は,4班に分かれて4つのテーマを3週ずつ回る.第1班はABCD,第2班はBCDA,第3班はCDAB,第4班はDABCと大テーマを巡回する.後期の第1週目に,安全教育を行う. |                                                                                                                                                      |  |