科目		化学反応論 (Chemical Kinetics and Dynamics)					
担当教員		渡辺 昭敬 准教授					
対象学年等		応用化学専攻・1年・後期・選択・2単位					
学習·教育目標		A4-3(100%) JABEE基準1(1) (d)1,(d)2-a,(d)2-d,(g)					
授業の 概要と方針		化学の基礎となる化学反応論の基礎理論を学ぶ、講義はゼミナール形式を主体とし、問題演習なども積極的に取り入れていく、また、近年の計算機科学の発達に対応するべく量子化学計算によって素反応過程中における遷移状態の構造決定演習を行う、					
		到達目標	達成	度	到達目標毎の評価方法と基準		
1	【A4-3 】 素 程式をたてる	反応機構について理解し,反応に応じて反応方 ことができる.			反応次数とその決定法 反応速度式の積分系を求めることが できるかどうか定期試験で評価する .		
2	【A4-3 】ア	レニウスの反応速度式について理解する.			アレニウス式の前指数因子の諸理論での解釈について理解しているか定期試験で評価する.		
3 【A4-3 】 種 を理論的に導		突速度理論と遷移状態理論の両者から速度定数 出することができる.			衝突速度理論と遷移状態理論の違いを理解しているかどうか 定期試験で評価する.		
4	【A4-3 】 遷 ことができる	移状態の構造を量子化学計算を用いて予測する).			各自が注目した反応系について量子化学計算を行いレポート で評価する.		
5							
6							
7							
8							
9							
10							
総合評価		成績は,試験70%,レポート30%として評価する.試験成績は定期試験の結果を100%とする.100点満点で60点以上を合格とする.					
テキスト		「はじめての化学反応論」:土屋 荘次(岩波書店)					
参考書		「分子衝突と化学反応」:R.D.レヴィン,R.B.バーンスタイン著,井上鋒明 訳 (学会出版センター) 「レーザー化学」:土屋荘次 編(学会出版センター) 「化学反応論」: 笛野高之 著 (朝倉書店)					
関連科目		物理化学,応用物理I,II					
	髪修上の 注意事項						

	授業計画 1 (化学反応論)				
週	テーマ	内容(目標, 準備など)			
. 1	化学反応の速度 (1)	反応速度式について理解し,一次反応および二次反応の積分形を導出する.			
2	化学反応の速度 (2)	擬一次反応速度について理解する.			
3	化学反応の速度 (3)	衝撃波法 , フラッシュフォトリシス法など , 実際に反応速度を実験で求める方法について理解する .			
4	複合反応とそ反応	複合反応について考える。速度定数の大小関係と速度式の関係について考察する。			
5	分子の衝突と化学反応 (1)	衝突速度理論について三週に渡り理解する.			
6	分子の衝突と化学反応 (2)	衝突速度理論について三週に渡り理解する.			
7	分子の衝突と化学反応 (3)	衝突速度理論について三週に渡り理解する.			
8	化学反応の統計理論 - 遷移状態理論 - (1)	遷移状態理論について三週に渡り理解する.			
9	化学反応の統計理論 - 遷移状態理論 - (2)	遷移状態理論について三週に渡り理解する.			
10	化学反応の統計理論 - 遷移状態理論 - (3)	遷移状態理論について三週に渡り理解する.			
11	化学反応の統計理論 - 単分子反応理論 -	リンデマン機構 , RRK理論 , RRKM理論の概要について解説する .			
12	分子化学計算演習(1)	Gaussianを用いた、分子化学計算法について四回にわたり実習する、分子構造の入力方法とシングルポイント計算法について実習する。			
13.	分子化学計算演習(2)	構造最適化の方法,振動数計算の算出方法を実習する.			
14	分子化学計算演習(3)	遷移状態の構造と熱力学的データの求め方を実習する.			
15	分子化学計算演習(4)	任意の反応系に於いて反応経路の探索や遷移状態の構造と熱力学定数を求める.結果をレポートにて報告する.			
備	後期定期試験を実施する.				
考					