【 2008 年度 授業概要】
科   目 電気磁気学II ( Electromagnetics II )
担当教員 一瀬 昌嗣 講師
対象学年等 電子工学科・4年・通年・必修・2単位 ( 学修単位III )
学習・
教育目標
A4-1(100%)
JABEE
基準1(1)
(d)1,(d)2-a,(d)2-d,(g)
授業の概要
と方針
電磁気学は目新しい数学的概念が現れ難しく感じられるが,物理現象をきちんとイメージすることによって,新しく出てくる物理・数式・計算も思っていた以上に簡単になることが多い.本授業では新しく登場する電磁気学における法則・数式については,必ず物理的理解(イメージ)が出来るよう進めていく.また学んだ事柄について学生諸君の理解を定着させるためにも,毎回例題・問題演習を行う.



1 【A4-1】  静電場の知識を用いて,定常電流に関する問題を解くことが出来る.
2 【A4-1】  静磁場についての基本法則を用いて,磁場に関する問題を解くことが出来る.
3 【A4-1】  静磁場と静電場のベクトル・スカラーポテンシャル表記についてイメージを持って理解し,またベクトルについての計算が出来る.
4 【A4-1】  磁性体と磁場の関係を理解し,磁場についての物理現象を説明することが出来る.
5 【A4-1】  様々な特徴を持つ回路について理解し,これらについての問題を解くことが出来る.
6 【A4-1】  Maxwell方程式に表された物理をイメージを持って理解できている.また電磁波について理解している.
7 【A4-1】  特殊相対性理論と古典物理学の違いを説明できる.
8  
9  
10  












1 オーム,キルヒホッフの法則を理解しているか,前期中間試験,レポートから評価する.
2 アンペール,ビオ・サバールの法則を理解してそれらを使うことができているか,前期定期試験,レポートから評価する.
3 ベクトルで電場・磁場を解釈できているか,またベクトル表記が正しく行えているか,前期定期試験,レポートから評価する.
4 磁性体中の磁場の変化,磁性体の種類,磁束密度と磁場の大きさの違いが理解できているか,また電磁誘導の物理的理解ができているか,後期中間試験,レポートから評価する.
5 直流回路と交流回路におけるインダクタンス,インピーダンス,リアクタンスが理解できているか,後期中間・定期試験,レポートから評価する.
6 Maxwell方程式が書け,各式の物理的意味を理解できているか,また電場・磁場・電磁波(光)の関係が理解できているか,後期定期試験,レポートから評価する.
7 光速度不変の原理,相対性原理を理解し,Lorentz変換を用いて物体・時間の収縮を求めることができるか,後期定期試験,レポートから評価する.
8  
9  
10  




成績は,試験70% レポート30% として評価する.試験は4回の平均点とする(70点満点).総合評価は100点満点とし60点以上を合格とする.
テキスト 「電気学会大学講座 電磁気学」: 山田直平,桂井 誠(電気学会)
参考書 「詳解 電気磁気学例題演習」: 山口勝也((コロナ社)
「物理テキストシリーズ 電磁気学」:砂川重信(岩波書店)
「ファインマン物理学III 電磁気学」:ファインマン 訳;宮島龍興(岩波書店)
関連科目 数学I,数学II,物理,電気磁気学I,応用数学
履修上の
注意事項
本授業の履修前に電気磁気学Iで学習した内容を必ず復習しておき,本授業に対する予習・復習を心がけること.

【授業計画( 電気磁気学II )】
上段:テーマ/下段:内容(目標、準備など)
1 定常電流とその保存則
電流の定義,時間的に変化しない電流(定常電流)からどのような式が導かれるのか理解することを目標とする.
2 オームの法則
電流・電圧・抵抗の間に成り立つ関係,電荷の移動に必要な仕事(率)の関係からジュール熱,電力の考え方が導かれること等の理解を目標とする.また電池につなげた導線に電流が流れる原因,それによるオームの法則の変更点の理解を目標とする.
3 キルヒホッフの法則
複雑な回路内の電流,電圧,抵抗の求め方を理解し,それらを用いて各値が求められることを目標とする.
4 定常電流の空間的分布
有限の広がりをもつ導体内部における電流分布と,電子の運動で考えた場合のオームの法則について理解することを目標とする.
5 定常電流の場と静電界
上で学んだ2通りの方法で,コンデンサ間に導体をつめた場合の静電容量と電気抵抗の間に成り立つ関係式を考察する.
6 ベクトル積・回転
今後の授業の準備として,ベクトルの外積と回転についての数学的知識を学ぶ.
7 問題演習
第1〜6週の間に学んだ事の理解度の確認として演習を行う.
8 中間試験
静電場の知識はもちろんのこと,オームの法則,キルヒホッフの法則を用いて様々な計算ができること.
9 電流と磁場
電流から磁場を発見するに至った経緯を説明し,電流同士にはたらく力(アンペール力),電流は電荷をもった粒子であることから導かれた力(ローレンツ力)について理解することを目標とする.磁場と磁束密度の違いを理解する.
10 ビオ・サバールの法則
定常電流の作る磁場からビオ・サバールの法則を説明し,ビオ・サバールの法則を用いて様々な問題が解けることを目標とする.またこの法則により,磁束密度の発散について法則が導かれることを解説する.
11 アンペールの法則
アンペール力と磁場との関係から,閉じた磁力線と電流の間に成り立つ関係式(積分型のアンペールの法則)を説明し,積分型のアンペールの法則を用いて様々な問題が解けることを目標とする.また,磁束密度の発散と積分型のアンペールの法則から磁束密度の回転について法則が導かれることを解説する.
12 ベクトルポテンシャル
ベクトルポテンシャル,スカラーポテンシャルを用いた電場と磁束密度の表し方について解説する.
13 磁気双極子モーメント
物質の磁化・磁化電流について解説する.また電場が電気双極子モーメントで表すことが出来ることからヒントを得て,磁束密度が磁気双極子モーメントから導かれることを解説する.磁気双極子の考え方について理解することを目標とする.
14 磁性体中の静磁場の基本法則
磁性体中の磁化率によって磁場の大きさが導かれることを解説する.
15 問題演習
第9〜14週の間に学んだ事の理解度の確認として演習を行う.
16 強磁性体の性質と静磁場
強磁性体についての諸性質について解説する.また静電場で導かれた関係が静磁場では成り立つかどうかの考察を行う.この週では電位に対して『磁位』,静電遮蔽に対して『磁気遮蔽』についての理解を目標とする.
17 静磁場と静電場
静電場で導かれた関係が静磁場では成り立つかどうかの考察を前週に続いて行う.この週では静電場のエネルギーに対して『静磁場のエネルギー』,磁気回路における『キルヒホッフの法則』,起電力に対して『起磁力』についての理解を目標とする.
18 インダクタンス1
電磁誘導について初め解説した上で,インダクタンスの解説をする.自己インダクタンス,相互インダクタンスの理解を目標とする.
19 インダクタンス2
自己インダクタンス,相互インダクタンス間の関係を理解し,インダクタンスの直列接続,2本の平行導線間の相互インダクタンスについての問題が解けることを目標とする.
20 インダクタンス3
前週に続き,インダクタンスについての例題として2個の円形コイル間の相互インダクタンス,断面積のある導体のインダクタンス,電線のインダクタンスの解説をし,それらについての問題が解けることを目標とする.
21 電流回路の方程式1
回路内を流れる電流の変化に伴い生じる起電力,またそれによる磁場のエネルギー,導体と起電力の関係について理解することを目標とする.
22 問題演習
第16〜21週の間に学んだことの理解度の確認として演習を行う.
23 中間試験
磁場に対する知識をしっかりつけ,インダクタンスと回路に関する問題について様々な計算ができること.
24 電流回路の方程式2
発電機と電動電気の原理,電磁誘導,インダクタンスに関する回路について解説した後,それらの問題が解けることを目標とする.
25 電流回路の方程式3
電流の値が定常値になるまでに起こる現象(過渡現象),交流回路におけるインピーダンス,リアクタンスについての解説をし,それらについての問題が解けることを目標とする.
26 Maxwell方程式
今までの物理的な基本法則を4つの式(Maxwell方程式)にまとめられることを解説する.またMaxwell方程式から光の速度が自然と導かれることを解説する.
27 電磁波
電磁波とは何からできているのか,電磁波はどのように進むのかについて解説する.
28 特殊相対性理論1
アインシュタインを筆頭として作られた相対性理論は,電磁気学のMaxwell方程式が出発点であったことを解説する.そしてアインシュタインの物理と,それ以前の古典物理学の考え方との相違について解説し,理解することを目標とする.
29 特殊相対性理論2
光に近い速度で進むと我々の日常がどのように変化するのか,様々な例を挙げながら解説していく.このとき重要となるローレンツ変換について理解することを目標とする.
30 問題演習
第24〜29週の間に学んだ事の理解度の確認として演習を行う.


前期,後期ともに中間試験および定期試験を実施する.