,	科目	情報数值解析 (Numerical Analysis of Inform	nation)		
担	旦当教員	嵯峨 晃			
対	象学年等	都市工学科・4年・後期・必修・1単位(学修単位	헌)	
学習	·教育目標	工学複合プログラム A3(100%)		JABEE基準1(1)	(c),(d)1
	授業の 要と方針	自然界の工学的諸問題は通常,微分方程式でい、この授業では,FORTRAN言語による基本共に,種々の工学的諸問題を数値的に解析す	マプログ:	ラム知識をもとに計算アルゴリス	を求めることができな ぐムの考え方を習得すると
		到達目標	達成度	到達目標毎の評価	T方法と基準
1	【A3 】 Linu	xの基礎知識が理解できまた基本操作ができる。		Linuxの基礎知識が理解できまた基 課題の提出で評価する。	本操作ができるかは,演習
2	【A3】 FOR	TRAN言語による基本的なプログラムが作成できる		FORTRAN言語による基本的なプロ 習課題の提出で評価する。	グラムの作成については,演
3	【A3 】 方程 法 " の手法か	式の求根の数値解法 " Newton法 , Regula falsi 『理解でき,プログラムが作成できる。		数値解法 " Newton法 , Regula falsi法 プログラムが作成できるかは , 演習 評価する。	:"の手法が理解でき 習課題の提出と中間試験で
4	【A3 】連立 し法) "の手	一次方程式の数値解法 " Gauss-Jordan法(掃き出 法が理解でき,ブログラムが作成できる。		数値解法 " Gauss-Jordan法(掃き出し , プログラムが作成できるかは , 淳 で評価する。	ノ法)"の手法が理解でき 質習課題の提出と定期試験
5	【A3 】補間 でき , プロク	法の数値解法 " Lagrangeの公式 " の手法が理解 プラムが作成できる。		数値解法 " Lagrangeの公式 " の手法 が作成できるかは,演習課題の提出	が理解でき , プログラム 出と定期試験で評価する。
6 7	【A3 】コンできる。	ピュータによる微分方程式の解法について説明		コンピュータによる微分方程式の角で評価する。	解法については,定期試験
8					
9					
10					
¥	総合評価	コンピュータによる演習を主眼とするので, 総合評価する.	日頃の演	習状況(演習課題の提出)が凡	そ50%,試験成績50%で
_	テキスト	プリント講義			
	参考書	「FORTRANと数値計算法」武藤・杉江・岡崎 「ザ・FORTRAN 77」戸川隼人著(サイエン) 「FORTRANの数値計算入門」金田数正著(内原	ス社)		
阝	引連科目	情報基礎,情報処理			
	髪修上の 注意事項				

2 基本 3 C言 4 FOF 5 FOF 6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	テーマ 説知識Linuxの基本(1) 本操作Linuxの基本(2) 語の基礎の復習 RTRAN基礎の演習I RTRAN基礎の演習II 是式の求根(1)説明,演習 是式の求根(2)プログラミング演習 別試験 主の座屈方程式(構造力学の柱) ユー次方程式(1)説明,演習 ユー次方程式(2)プログラミング演習 別法(1)説明,演習 別法(2)プログラミング演習	内容(目標,準備など) Linuxの基本について説明・UNIX環境について説明する。 プログラムの作成やコマンドの実行などプログラム演習に必要な作業について説明する。デスクトップ,エディタ,コンパイルとプログラムの実行,リストと結果の印刷,ファイル操作の基本コマンドなどの説明をする。 2年時に習得したC言語の基礎(文法)について復習する。 最別,サブルーチン,関数などによる前単なプログラミング演習をする。 配列,サブルーチン,関数などによるプログラミング演習をする。 高次方程式や非線形方程式の根を求める数値解法 "Newton法, Regula falsi法"について説明,演習をする。 "Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う。 Linuxの基本,FORTRANの基礎,FORTRANによるプログラミング、高次方程式の数値解法などについて出題する。 Newton法により構造力学の長柱の座屈方程式が解法できるので,Newton法のプログラムを適用して,長柱の座屈 荷重及び座屈応力度を求める。 構造力学の解法などは多元連立一次方程式を解くことになる。ここでは連立一次方程式の数値解を求める。 Gauss-Jordan法(掃き出し法)"のプログラムについて説明、演習をする。 "Gauss-Jordan法"のプログラムについて説明、演習をする。 "Gauss-Jordan法"のプログラムで記していて説明、演習をする。 "Lagrangeの補間法"について説明、演習をする。 "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする。 "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする。 "エスティータでは特定の解の数値表を作ることで微分方程式を解いたことにする。そのためのプログラムは、どのような考え方によるのかについて説明する。 実際の技術計算で最も多く使われている"Runge-Kutta法"のプログラムの説明とプログラミング演習をする。
2 基本 3 C言 4 FOF 5 FOF 6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 3 份分	議保作Linuxの基本(2) 語の基礎の復習 RTRAN基礎の演習 I RTRAN基礎の演習 I RTRAN基礎の演習 I R式の求根(1)説明,演習 R式の求根(2)プログラミング演習 B	プログラムの作成やコマンドの実行などプログラム演習に必要な作業について説明する.デスクトップ,エディタ,コンパイルとプログラムの実行,リストと結果の印刷,ファイル操作の基本コマンドなどの説明をする. 2年時に習得したC言語の基礎(文法)について復習する. 録り返し,判断,分岐,書式などによる簡単なプログラミング演習をする. 配列,サブルーチン,関数などによる簡単なプログラミング演習をする. 高次方程式や非線形方程式の根を求める数値解法"Newton法,Regula falsi法"について説明,演習をする. "Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う. Linuxの基本,FORTRANの基礎,FORTRANによるプログラミング、高次方程式の数値解法などについて出題する. Newton法により構造力学の長柱の座屈方程式が解法できるので,Newton法のプログラムを適用して,長柱の座屈荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める"GaussJordan法(掃き出し法)"のプログラムについて説明,演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる.補間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
3 C言 4 FOF 5 FOF 6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	語の基礎の復習 RTRAN基礎の演習I RTRAN基礎の演習II R式の求根(1)説明,演習 R式の求根(2)プログラミング演習 の意味を表現である。 の意味を表現できませ、表現である。 の意味を表現である。 の意味を表現できませ、表現である。 の意味を表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現である。 の意味を表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現できませ、表現である。 の意味を表現できませ、表現である。 の意味を表現できませ、表現できませ、表現である。 の意味を表現できませ、表現できませ、表現できませ、表現である。 の意味を表現できませ、ままでは、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、表現できませ、ままでは、ままでは、ままでは、ままでは、ままでは、ままでは、ままでは、まま	タ,コンパイルとプログラムの実行,リストと結果の印刷,ファイル操作の基本コマンドなどの説明をする. 2年時に習得したC言語の基礎(文法)について復習する. 繰り返し,判断,分岐,書式などによる簡単なプログラミング演習をする. 配列,サブルーチン,関数などによるプログラミング演習をする. 高次方程式や非線形方程式の根を求める数値解法"Newton法,Regula falsi法"について説明,演習をする. "Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う. Linuxの基本,FORTRANの基礎,FORTRANによるプログラミング,高次方程式の数値解法などについて出題する. Newton法により構造力学の長柱の座屈方程式が解法できるので,Newton法のプログラムを適用して,長柱の座屈 荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める"GaussJordan法(掃き出し法)"のプログラムについて説明,演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる.補間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
4 FOR 5 FOR 6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	RTRAN基礎の演習II RTRAN基礎の演習II R式の求根(1)説明,演習 R式の求根(2)プログラミング演習 の	繰り返し、判断、分岐、書式などによる簡単なプログラミング演習をする. 配列、サブルーチン、関数などによるプログラミング演習をする. 高次方程式や非線形方程式の根を求める数値解法"Newton法、Regula falsi法"について説明、演習をする. "Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う. Linuxの基本、FORTRANの基礎、FORTRANによるプログラミング、高次方程式の数値解法などについて出題する. Newton法により構造力学の長柱の座屈方程式が解法できるので、Newton法のプログラムを適用して、長柱の座屈 荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める"GaussJordan法(標き出し法)"のプログラムについて説明、演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合、非線形特性が解析的に得られないとき、補間法が重要となる. ・補間法の代表的な数値解"Lagrangeの補間法"について説明、演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは、どのような考え方によるのかについて説明する.
5 FOR 6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	RTRAN基礎の演習II 程式の求根(1)説明,演習 程式の求根(2)プログラミング演習 別試験 社の座屈方程式(構造力学の柱) 立一次方程式(1)説明,演習 立一次方程式(2)プログラミング演習 別法(1)説明,演習	配列,サブルーチン,関数などによるプログラミング演習をする. 高次方程式や非線形方程式の根を求める数値解法"Newton法,Regula falsi法"について説明,演習をする. "Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う. Linuxの基本,FORTRANの基礎,FORTRANによるプログラミング,高次方程式の数値解法などについて出題する.. Newton法により構造力学の長柱の座屈方程式が解法できるので,Newton法のプログラムを適用して,長柱の座屈 荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める"Gauss-Jordan法(掃き出し法)"のプログラムについて説明,演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる.・ ・ 相間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
6 方程 7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	程式の求根(1)説明,演習 程式の求根(2)プログラミング演習 間試験 在の座屈方程式(構造力学の柱) 立一次方程式(1)説明,演習 立一次方程式(2)プログラミング演習 間法(1)説明,演習	高次方程式や非線形方程式の根を求める数値解法 "Newton法, Regula falsi法 "について説明,演習をする. "Newton法及びRegula falsi法 "のプログラムの説明とそのプログラミング演習を行う. Linuxの基本 , FORTRANの基礎 , FORTRANによるプログラミング , 高次方程式の数値解法などについて出題する . Newton法により構造力学の長柱の座屈方程式が解法できるので , Newton法のプログラムを適用して , 長柱の座屈 荷重及び座屈応力度を求める . 横造力学の解法などは多元連立一次方程式を解くことになる . ここでは連立一次方程式の数値解を求める "GaussJordan法(掃き出し法)"のプログラムについて説明 , 演習をする . "Gauss-Jordan法 "のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する . 各種問題のシミュレーション (模擬)を行う場合 , 非線形特性が解析的に得られないとき , 補間法が重要となる . 補間法の代表的な数値解 "Lagrangeの補間法 "について説明 , 演習をする . "Lagrangeの補間法 "のプログラムの説明とプログラミング演習をする . コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする . そのためのプログラムは , どのような考え方によるのかについて説明する .
7 方程 8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	程式の求根(2)プログラミング演習 間試験 社の座屈方程式(構造力学の柱) ユー次方程式(1)説明,演習 ユー次方程式(2)プログラミング演習 間法(1)説明,演習 間法(2)プログラミング演習	"Newton法及びRegula falsi法"のプログラムの説明とそのプログラミング演習を行う. Linuxの基本 , FORTRANの基礎 , FORTRANによるプログラミング , 高次方程式の数値解法などについて出題する
8 中間 9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	別試験 主の座屈方程式(構造力学の柱) エー次方程式(1)説明,演習 エー次方程式(2)プログラミング演習 別法(1)説明,演習 別法(2)プログラミング演習	Linuxの基本 , FORTRANの基礎 , FORTRANによるプログラミング , 高次方程式の数値解法などについて出題する . Newton法により構造力学の長柱の座屈方程式が解法できるので , Newton法のプログラムを適用して , 長柱の座屈 荷重及び座屈応力度を求める . 構造力学の解法などは多元連立一次方程式を解くことになる . ここでは連立一次方程式の数値解を求める " Gauss-Jordan法(掃き出し法)"のプログラムについて説明 , 演習をする . " Gauss-Jordan法 "のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する . 各種問題のシミュレーション (模擬)を行う場合 , 非線形特性が解析的に得られないとき , 補間法が重要となる . 補間法の代表的な数値解 " Lagrangeの補間法 " について説明 , 演習をする . " Lagrangeの補間法 " のプログラムの説明とプログラミング演習をする . コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする . そのためのプログラムは , どのような考え方によるのかについて説明する .
9 長柱 10 連立 11 連立 12 補間 13 補間 14 微分	注の座屈方程式(構造力学の柱) ユー次方程式(1)説明,演習 ユー次方程式(2)プログラミング演習 別法(1)説明,演習 別法(2)プログラミング演習	・ Newton法により構造力学の長柱の座屈方程式が解法できるので,Newton法のプログラムを適用して,長柱の座屈 荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める " Gauss.Jordan法(掃き出し法)"のプログラムについて説明,演習をする. " Gauss-Jordan法 "のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる. 補間法の代表的な数値解 " Lagrangeの補間法 " について説明,演習をする. " Lagrangeの補間法 " のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
10 連立 11 連立 12 補間 13 補間 14 微分	ユー次方程式(1)説明,演習 ユー次方程式(2)プログラミング演習 別法(1)説明,演習 別法(2)プログラミング演習 分方程式の解法(1)説明	荷重及び座屈応力度を求める. 構造力学の解法などは多元連立一次方程式を解くことになる.ここでは連立一次方程式の数値解を求める "GaussJordan法(帰き出し法)"のプログラムについて説明,演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる.補間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
11 連立 12 補間 13 補間 14 微分	☑一次方程式(2) プログラミング演習 別法(1) 説明,演習 別法(2) プログラミング演習	GaussJordan法(掃き出し法) "のプログラムについて説明,演習をする. "Gauss-Jordan法"のプログラミング演習と構造力学の各種ラーメン構造物の連立一次方程式を解法する. 各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる. 補間法の代表的な数値解 "Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
12 補間 13 補間 14 微分	別法(1)説明,演習 別法(2)プログラミング演習 分方程式の解法(1)説明	各種問題のシミュレーション(模擬)を行う場合,非線形特性が解析的に得られないとき,補間法が重要となる.補間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
13 補間	別法(2)プログラミング演習 合う方程式の解法(1)説明	. 補間法の代表的な数値解"Lagrangeの補間法"について説明,演習をする. "Lagrangeの補間法"のプログラムの説明とプログラミング演習をする. コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
14 微分	う方程式の解法(1)説明	コンピュータでは特定の解の数値表を作ることで微分方程式を解いたことにする.そのためのプログラムは,どのような考え方によるのかについて説明する.
		のような考え方によるのかについて説明する.
15 微分	う方程式の解法(1)プログラミング演習	実際の技術計算で最も多く使われている"Runge-Kutta法"のプログラムの説明とプログラミング演習をする.
1		
/ **		
備 中		