:::::: <u>:</u>	科:目::	ウロギが / A pulled Mathematica						
	14	応用数学 (Applied Mathematics)						
担当教員		松田 忠重,早ノ瀬 信彦						
対	象学年等	電気工学科・4年・通年・必修・4単位(学修単位I)						
学習·教育目標		工学複合プログラム A1(100%) JABEE基準1(1) (c),(d)1						
応用数学は電磁気学,電気回路,制御工学などを学習するための基礎となる数学であることを 授業の 授業を行う.ベクトル解析,複素関数論は早ノ瀬が担当し,ラプラス変換,フーリエ級数は松 、理解を深めるため,演習を重視した内容とし,電気的な内容の課題,演習を出来るだけ取り する.								
到達目標 達成度				到達目標毎の評価方法と基準				
1	【A1 】 ベク 積分ができる	トルの四則演算,微分,積分,また線積分,面 。		ベクトルの四則演算、微分,積分,また線積分,面積分は, 主に前期中間試験で評価する。				
2	【A1 】 ベクトル場での発散,回転が計算できる。またガウスの発散定理,ストークスの定理が適用できる。			ベクトル場の発散,回転の計算,ガウスの発散定理,ストークスの定理の適用は主に前期定期試験で評価する。				
3	3 【A1】 複素数の四則演算,微分,積分ができる。また,テーラー展開,マクローリン展開,ローラン展開ができる。			複素数の四則演算,微分,積分の計算,コーシおよびグール サの公式を用いた積分は主に後期中間試験で評価する。				
4	4 【A1 】 コーシの積分公式およびグールザの公式を用いた積分ができる。			テーラー展開,マクローリン展開,ローラン展開ができることは主に後期定期試験により評価する。				
5	5 【A1 】 留数の計算と留数による簡単な複素積分の計算,またその応用による簡単な積分や逆ラブラス変換ができる。			留数 , 留数による複素積分 , またその応用による簡単な実積分 , 逆ラプラス変換は主に後期定期試験により評価する。				
6	【A1】 単純な波形のラブラス変換が計算できる , ラプラス 変換の基本的性質を説明できる。			単純な波形のラプラス変換が計算できる、ラプラス変換の基本的性質を説明できることを中間試験と授業内の演習で評価する。				
7	【A1】 簡単なたたみこみ計算ができる。			簡単なたたみこみ計算ができることを前期定期試験と授業内 の演習で評価する。				
8	【A1 】 ラプ ラプラス変換	ラス変換を使って簡単な常微分方程式が解け , 身を使って簡単な系の伝達関数の説明ができる。		ラプラス変換を使って簡単な常微分方程式が解け,ラプラス 変換を使って簡単な系の伝達関数の説明ができることを後期 定期試験と授業内の演習で評価する。				
9	【A1 】 単純な波形をフーリエ級数にすることができ,フーリエ級数の基本的性質が説明できる。			単純な波形をフーリエ級数に展開でき、フーリエ級数の基本 的性質が説明できることを中間試験と授業内の演習で,フー リエ級数で合成できることをレポートで評価する。				
10	10 【A1】単純な波形を複素フーリエ級数に展開できる。フーリエ変換できる。			単純な波形を複素フーリエ級数に展開できること、フーリエ 変換できることを後期定期試験と授業内の演習で評価する。				
総合評価 担当者2名でそれぞれ50%づつ評価する、早ノ瀬の評価は4回の試験90%,普段のレポート10%で評価する、 は試験成績70%,レポート20%,授業中の演習10%の割合で評価を行う。								
テキスト		「現代 基礎電気数学」:卯本重郎(オーム社) 「応用数学」:田河他著 大日本図書出版社						
参考書		「解析学概論」:矢野健太郎,石原繁(裳華房) 「応用解析学入門」:白井宏著(コロナ社) 「やさしいフーリエ変換」:松尾博著(森北出版社)						
関連科目		電磁気学,電気回路,制御工学,数値解析						
履修上の 注意事項		本科目は専門科目の基礎科目です.本科目の受講には特に,微分,積分また微分方程式の知識が必要です. このため,3年までの数学I,II,また電気数学の学習をしっかりしておくことが重要です.						

授業計画1(応用数学)							
週	テーマ ガイダンスとベクトルの演算 (1)	内容(目標,準備など) 1年間の授業計画の説明,授業に対する諸注意.3次元基本単位ベクトルの導入と解析的な取り扱いの講義を行い,またその演習を行う.					
2	ベクトルの演算 (2)	ベクトルの内積および外積などの演算則の講義を行い、その演習を行う.					
3	ベクトル演算則の応用	ベクトル3重責などの関係式,各種法則のベクトルを用いた証明を行い,その演習を行う.					
4	ベクトルの微分	ベクトルの導関数とその応用の講義を行い,その演習を行う.					
5	スカラー関数の勾配	ポテンシャル関数と勾配の関係について講義し,演習を行う.					
6	ベクトルの発散と回転	ベクトルの発散と回転について講義し,その演習を行う.					
7	ベクトルの線積分	ベクトルの線積分について講義を行い,その演習を行う.					
8	中間試験	1)から7)の内容について試験を行う.					
9:	中間試験の解答,ベクトルの面積分	中間試験の解答を行い、これまでのまとめをする.また、ベクトルの面積分について講義を行い、演習を行う.					
10	ガウスの発散定理	ガウスの発散定理について講義を行い、その定理を用いる演習を行う.					
11	ストークスの定理	ストークスの定理について講義し,定理を用いる演習を行う.					
12	マックスウエルの電磁方程式 (1)	ガウスの法則,アンペアの法則,ファラデーの法則とマックスウエルの電磁方程式の関係について講義する.					
13	マックスウエルの電磁方程式 (2)	マックスウエルの電磁方程式を用いる演習を行う.					
14	複素数の取り扱い	複素数の基本的な演算について講義し,演習を行う.					
15:	正則関数	正則関数について講義し,それを用いる演習を行う.					
16	前期定期試験の解答とまとめ,初等関数(1)	9)から15)までの内容についての定期試験の解答をおこない,これまでのまとめを行う.複素領域での指数関数,三角関数,双曲線関数について講義する.					
17	初等関数(2)	複素領域での三角関数,双曲線関数の性質,導関数,逆関数などについて講義し,初等関数について演習を行う ・					
18	コーシーの積分定理	コーシーの積分定理について講義し,その適用について演習を行う.					
19	コーシーの積分公式とグールサの定理 (1)	コーシーの積分公式とグールサの定理について講義し、その適用について演習を行う.					
20	コーシーの積分公式とグールサの定理(2)	コーシーの積分公式とグールサの定理の適用について演習を行う.					
21	テーラー展開とローラン展開(1)	テーラー展開,マクローリン展開,ローラン展開について講義し,その演習を行う.					
22	テーラー展開とローラン展開(2)	テーラー展開,マクローリン展開,ローラン展開について講義し,その演習を行う.					
23	中間試験	16)から22)の内容について試験を行う.					
24	中間試験の解答とまとめ,特異点と分岐	中間試験の解答とまとめを行う.特異点,分岐,極などについて講義を行い,演習を行う.					
25	留数定理,留数	留数定理について講義し,留数計算の演習を行う.					
26	留数定理による複素積分	留数定理による複素積分について講義し,簡単な複素積分の演習を行う.					
27	留数定理による逆ラプラス変換(1)	留数定理による逆ラブラス変換の講義を行い,逆ラブラス変換の演習を行う.					
28	留数定理による逆ラプラス変換(2)	留数定理による逆ラブラス変換の演習を行う.					
29	複素積分の実積分への応用(1)	複素積分の実積分への応用について講義し,その演習を行う.					
30	複素積分の実積分への応用(2)	複素積分の実積分への応用について演習を行う.					

	授業計画 2 (応用数学)							
	テーマ	内容(目標, 準備など)						
31	ラプラス変換の定義,ラプラス変換の例	(実数から実数へまたは複素数から複素数へ,関数から関数への変換があるが)変換とはどのようなものか,次にラブラス変換とはどのようなものかなどの定義を学ぶ、ラブラス変換をいくつかの例で実際行う、学生は,部分積分の計算,極限における計算ができる必要があることに注意.(また,この時点では複素微分,複素積分をまた学んでいないことにも注意すること.)						
32	演習	教科書の例題,問題を使ってラブラス変換を演習形式で行う.						
33	小テスト	ラプラス変換を行うことに関して小テストする.						
34	基本的性質,例題問題	ラプラス変換に関する線形性,原関数の原点移動,像関数の原点移動の性質を学ぶ、原関数の微分積分のラプラス変換に関する性質を学ぶ、例として簡単なR,Cの電気回路の微分方程式のラプラス変換を行う。						
35	演習	ラブラス変換の基本的性質の内容を演習で行う.						
36	たたみこみ,例題問題	たたみこみとは何か学ぶ、たたみこみの定義とそのラブラス変換を学ぶ、例題問題する。						
37	演習	たたみこみ計算とたたみこみのラプラス変換に関して演習する.						
38	中間試験	30回から37回目までが試験範囲. どのような方法を用いてもよいので,簡単な関数のラブラス変換ができることを評価する. 基本的なラブラス変換の性質が理解できていることを評価する.						
39	中間試験問題解説,逆ラプラス変換	中間試験問題解説する.ラブラス像関数から原関数を求める(変換表の像関数にあるような部分分数にして原関数を求める)方法を学ぶ.						
40	逆ラプラス変換,例題問題	例題,問題で逆ラプラス変換を行う.たたみこみをその定義の積分から求める方法とラプラス変換,逆変換で求める方法を学ぶ.						
41	演習	学生は演習で次を行う.ラプラス像関数から原関数を求める.たたみこみをその定義の積分から求める方法とラプラス変換,逆変換で求める.						
42	常微分方程式解法への応用,例題問題	常微分方程式をラブラス変換すると未知関数の像関数は代数で求まることを学ぶ.未知関数は,その結果を逆ラブラス変換することより求まることを学ぶ.						
43	演習	教科書の常微分方程式の問題をラプラス変換を用いて解く.						
44	デルタ関数と系の伝達関数,例題問題	デルタ関数について学ぶ、インパルス応答と伝達関数を学ぶ、微分方程式の解のうち外力による項は、外力とインパルス応答とのたたみこみであることを学ぶ、						
:45:	演習	教科書内外の常微分方程式の問題をラブラス変換またはたたみこみを用いて解く、系の伝達関数を求める。						
46	前期定期試験問題解説,フーリエ級数の定義	前期定期試験問題解説する.フーリエ変換とはどのようなものか学ぶ,フーリエ級数の定義を学ぶ.						
47	フーリエ級数展開の例	簡単な例(矩形波)でフーリエ係数を求め,それでフーリエ合成を近似して黒板にグラフ表示して見せる.						
48	フーリエ級数展開と合成の例,レポート課題	簡単な例でフーリエ係数を求め,それでフーリエ合成を近似して黒板にグラフ表示して見せる.その級数はフリーソフトを使ってパソコンで簡単に近似合成できるのでそれをレポート課題とする.						
49	フーリエ級数の性質	レポート課題解説する.原関数が偶関数の場合,奇関数の場合のフーリエ級数,原関数の導関数のフーリエ級数を学ぶ.例を用いてそのフーリエ級数を求める						
50	例題問題,演習,レポート課題	その他の簡単な例でフーリエ係数を求める.その級数はフリーソフトを使ってパソコンで簡単に近似合成できるのでそれらのいくつかを2番目のレポート課題とする.						
51	フーリエ級数の性質	レポート課題の解説をする.フーリエ級数の収束について紹介.ある種の級数が原関数とフーリエ級数の関係から求まることを学ぶ.パーセバルの定理を学ぶ.時間軸周波数軸でのエネルギー密度の分布の関係を学ぶ.線スペクトラムとは何か学ぶ.歪み率について学ぶ.						
52	演習,小テスト	ここまでのフーリエ級数の内容で演習をする. 小テストをする.						
53	中間試験	46回目から52回目までが試験範囲.簡単な関数のフーリエ級数を求めることができるか,またある種の級数が原関数とフーリエ級数の関係から求めることができるか試験で評価する.パーセパルの定理,歪み率が理解されているが試験で評価する.						
54	中間試験問題解説,複素フーリエ級数	中間試験問題解説をする.複素フーリエ級数の定義を学ぶ.簡単な例を複素フーリエ級数に展開する.						
55	例題問題	簡単な例を複素フーリエ級数に展開する.						
56	演習	簡単な例を複素フーリエ級数に展開する.						
	偏微分方程式解法への応用	フーリエ級数で偏微分方程式(熱伝導方程式)を解く方法を学ぶ.						
58	フーリエ変換,フーリエ変換の例	フーリエ変換定義を学び,逆フーリエ変換が成立することを紹介する.						
59	フーリエ変換の性質	いくつかの簡単な例でフーリエ変換を行う,2,3のフーリエ変換の性質(移動則,微分則)について学ぶ.パーセパルの定理を学ぶ.時間軸周波数軸でのエネルギー密度の分布の関係を学ぶ.連続スペクトラムとは何か学ぶ						
<u> </u>	演習	教科書内外の問題でフーリエ変換を行う.						
備	中間試験および定期試験を実施する.							
考	, indiana, or or configuration of the property							