# 次世代型高速半導体スイッチを用いたコンデンサ 急速充電電源の開発

戸田颯\* 村中智穂子\*\* 赤松浩\*\*\*

## Development of Fast Capacitor-Charging Power Supply with Next Generation Power Semiconductor

### Hayate TODA\* Chihoko MURANAKA\*\* Hiroshi AKAMATSU\*\*\*

#### ABSTRACT

A capacitor charging power supply for pulsed power generator in high power pulsed sputtering has been developed with next generation power semiconductor. The power supply has a forword type single chopper geometory with a pulsed transformer. Gallium nitride (GaN) HEMT as a high speed power semiconductor was used for chopping device. In addition, GaN HEMT was compared with SiC MOSFET about the swiching performance. The condenser charging times for voltage of 800 V were 1 ms for GaN HEMT and 4 ms for SiC MOSFET. The power supply with GaN HEMT has the fastest time for charging voltage of 800 V.

*Keywords* : capacitor charging power supply, next generation power semiconductor, gallium nitride, silicon carbide, high power pulsed sputtering

#### 1. はじめに

低気圧プラズマを用いた機能性薄膜形成技術として, 1936年にマグネトロンスパッタリング(Magnetron Sputtering: MS)が発見された.図1に,MS技術の推移 を示す.MSは、絶縁体薄膜形成を目的とした高周波 MS,スパッタ粒子のイオン化を目的としたイオンアシ ストMS,ホローカソード放電型MS,磁場配置を不均 衡としたアンバランスMSなど様々な改良がなされ, 今日では半導体製造およびコーティング技術として欠 かすことのできない基盤技術となっていった<sup>(1,2)</sup>.

さて、1999 年に MS におけるメタルプラズマの高イ オン化を目的として、大電力パルススパッタリング (High Power Pulsed Sputtering: HPPS)が提案された<sup>(3)</sup>. こ の方式では、MS 源にキロワット級の大電力かつ数 10 μsのパルスを印加することにより、メタルプラズマの 高イオン化を試みている. メタルプラズマのイオン化 率が高くなると、成膜に関わるメタルイオンの比率が

| * | 電気工学科 | 研究生 |
|---|-------|-----|
|---|-------|-----|

- \*\* 電気工学科 本科生
- \*\*\* 電気工学科 准教授



図1MS技術の推移.

高くなり,ドロップレットの少ない高品質の成膜が可 能となる.

HPPS の電源装置に着目すると、コンデンサを用いた 容量性エネルギー蓄積方式のパルスパワー電源に分類 できる.図2に、一般的な HPPS の電源構成図を示す. 電源の動作は、エネルギー蓄積素子であるコンデンサ を直流電源によって充電し、パワー半導体スイッチの オンによって MS 源にパルス状の大電力を供給する.



Energy storage condenser

図2 大電力パルススパッタリングの電源構成.

表1 パワー半導体材料の特性.

|                    | Si                | 4H-SiC            | GaN                 |
|--------------------|-------------------|-------------------|---------------------|
| 比誘電率 ε             | 11.8              | 10                | 9.5                 |
| 電子移動度 μ [cm²/Vs]   | 1350              | 700               | 1500                |
| 電子飽和速度 [cm/s]      | $1 \times 10^{7}$ | $2 \times 10^{7}$ | $2.7 \times 10^{7}$ |
| 絶縁耐力 $E_c$ [MV/cm] | 0.3               | 3                 | 3.3                 |
| バリガ指数(Siを1とする)     | 1                 | 439               | 1128                |

このとき、コンデンサを急速充電できれば、MS 源の 大電力パルスを高繰り返しで印加することができ、メ タルプラズマの高イオン化を促進できると期待できる.

本研究では、コンデンサを急速充電できる直流電源 の開発を目的とした.コンデンサ急速充電電源は、出 力電圧が 800 V~1000 V であるため、AC100 V を昇圧・ 整流する機構が必要である.そこで、昇圧にはパルス トランスを用いたフォワード型シングルチョッパ回路、 整流には半波整流回路を採用した<sup>(4)</sup>.また、コンデン サ急速充電電源の小型化を想定した場合、構成部品の 中で最も大きいパルストランスを小型化することが重 要である.そのため、シングルチョッパに使用する半 導体スイッチには、窒化ガリウム(Gallium Nitride: GaN) 高電子移動度トランジスタ(High Electron Mobility Transistor: HEMT)を採用した.GaN は、表1に示すよ

表2 使用したパワー半導体スイッチの定格.

|                                          | SiC MOSFET | GaN HEMT  |
|------------------------------------------|------------|-----------|
|                                          | SCT2120AF  | TPH3206PS |
| ドレイン・ソース間電圧 $V_{DSS}$ [V]                | 650        | 600       |
| ゲート・ソース間電圧 V <sub>GS</sub> [V]           | -6 to 22   | ±18       |
| 連続ドレイン電流 I <sub>D</sub> [A] DC           | 29         | 17        |
| パルスドレイン電流 $I_D[A]$ Pulse                 | 72         | 60        |
| ドレイン・ソース間オン抵抗 $R_{DS(ON)}$ [m $\Omega$ ] | 120        | 150       |

うに炭化ケイ素(Silicon carbide: 4H-SiC)と同様に次世 代型高速半導体として従来のシリコン(Silicon: Si)にく らべ性能指数であるバリガ指数が極めて大きいという 特徴をもつ<sup>(5)</sup>. GaN を用いて製造された HEMT は,メ ガヘルツ級の高速スイッチングが可能であり,パルス トランスを磁気飽和させずに昇圧機能を維持できるた め,小型のパルストランスを採用できる.

本報告では、シングルチョッパに GaN HEMT および SiC MOSFET を用いた場合のコンデンサ充電電圧の充 電速度を比較した.

#### 2. 実験方法

図3に、作製したコンデンサ充電電源の回路図を示 す.同図は、半導体スイッチおよびパルストランスを 用いたフォワード型シングルチョッパである.AC100 Vを、スライダックを介し全波整流して1次ストレー ジコンデンサ $C_0$ =1000 µFを充電する.半導体スイッチ をON すると、コンデンサからのエネルギーがパルス トランスの1次巻線に付与され、昇圧されて2次側の 半波整流回路を通してコンデンサC=330 nFを充電す る.半導体スイッチには、GaN HEMT (TPH3206PS, Transphorm)および SiC MOSFET (SCT2120AF, ROHM) を使用した.両半導体スイッチの定格を表2に示す.



図3コンデンサ充電回路の回路図.



図4半導体スイッチの VGS およびパルストランス1次コイルの電圧 Vpの波形.



半導体スイッチの選定基準は、耐電圧が 600 V である ことを条件とした.半導体スイッチのゲート駆動回路 は、PIC マイコン(PIC16F84A)および光アイソレータ (TLP351)を用いて構成した.ゲート信号は、オン時間 200 ns、周波数を1 MHz とした.パルストランスは、 コアにファインメット(FT-3M, Hitachi Metals)を使用し、 1 次および 2 次の巻数をそれぞれ 4 および 37 とした. 昇圧比は 9.25 である.また、1 次巻線には、ダイオー ド(C2D20120D, CREE)を併用したリセット回路も接続 している.

コンデンサ充電電源の出力電圧 *V*<sub>out</sub> は,高電圧プロ ーブ(HV-P30, Iwatsu)およびオシロスコープ(TDS2024C, Tektronix)でモニターした.

#### 3. 実験結果

図 4 に, (a) SiC MOSFET および(b) GaN HEMT を用 いた場合における,半導体スイッチのゲート・ソース 間電圧  $V_{GS}$ およびパルストランス1次コイル電圧  $V_p$ を 示す. なお  $V_p$ は,  $V_i$ - $V_{DS}$ として算出した. いずれの場 合も,ゲートに電圧が加わると $V_p$ が立ち上がっている. 同図(a)から, SiC MOSFET の場合, $V_p$ の立ち上がり速 度は 1.2 V/ns であった. また,パルス時間は半値幅で 180 ns であった. 一方,同図(b)から, GaN HEMT では,  $V_p$ の立ち上がり速度は 9.2 V/ns,パルス時間は 280 ns であった. 立ち上がり速度は GaN HEMT が 7 倍程度大 きいことがわかった. なお,ゲート信号のパルス時間 が 200 ns に対して GaN HEMT の  $V_{GS}$ は 280 ns となった ことは調査が必要である. 図 5 に、1 次ストレージコンデンサの充電電圧 Viを DC100 Vとしたときの、電源出力電圧 Voutの時間変化 を示す. 同図(a)において、SiC MOSFET では到達電圧 が目標電圧である 800 Vであり、充電に要した時間は 約 4 ms であった. 一方、同図(b)より GaN-HEMT を用 いたとき到達電圧は 1400 V であり、目標電圧である 800 V までの充電に要する時間は約 1 ms であった. 以 上から、GaN HEMT を用いた場合は SiC MOSFET の 4 分の 1 の時間で 800 V まで充電できることが分かった. この原因を考察する. 図 4 から、SiC MOSFET の場 合、パルストランスの 1 次コイル電圧 Vp は平均 73 V、 パルス時間は 180 ns である. 一方、GaN HEMT の場合、

 $V_p$ の平均値は 89 V でパルス時間は 280 ns であった. 以上から、GaN HEMT の方がパルストランスの 1 次コ イルに印加される電圧が高く、時間も長いことから目 標電圧 800 V までの充電時間を短くできたと考えられ る.

#### 4. まとめ

本実験では、パルスパワー電源のエネルギー蓄積コ ンデンサを急速充電する直流電源をフォワード型シン グルチョッパ方式回路として作製した.また、シング ルチョッパに使用する半導体スイッチとして、次世代 パワー半導体である GaN HEMT および SiC MOSFET を比較した.実験の結果明らかになったことを以下に まとめる.

 (1) 半導体スイッチのゲート駆動にオン時間 200 ns, 周期 1 MHz の信号を用いたとき, SiC MOSFET お よび GaN HEMT でのパルストランス 1 次コイル電 圧のパルス時間はそれぞれ 180 ns および 280 ns で あった.

- (2) 1 次側整流電圧を 100 V としたとき、コンデンサ充 電電源の出力電圧は SiC MOSFET および GaN HEMT でそれぞれ 800 V および 1400 V であった.
- (3) 出力電圧の目標値 800 V までの充電時間は, SiC MOSFET および GaN HEMT でそれぞれ約4 ms お よび約1 ms であった.
- (4) 本実験において、GaN HEMT(TPH3206PS)は、SiC MOSFET (SCT2120AF)の4分の1の時間で目標電 圧 800 V の充電を達成できた。

#### 参考文献

- (1) 福島志郎, 細川直吉:「スパッタリングの歴史と応 用」, 金属表面技術, Vol. 36, No. 6, pp.218-228, 1985.
- (2) 東欣吾:「大電力パルススパッタリングプラズマ 源」, 電気学会論文誌 A, Vol. 132, No. 4, pp. 272-277, 2012.
- (3) Vladimir Kouznetsov, Karol Macak, Jochen M. Schneider, Ulf Helmersson, Ivan Petrov: "A novel pulsed magnetron sputter technique utilizing very high target power densities", Surf. Coat. Technol., Vol. 122, pp. 290-293, 1999.
- (4) 梶原泰治,境健太,佐久川貴志,秋山秀典:「パルス パワー用シングルチョッパ方式超小型キャパシタ 充電回路」,電気学会論文誌 A, Vol. 134, No. 4, pp. 211-216, 2014.
- (5) 山本真義:「ウルトラ・ハイスピード・パワー・ト ランジスタ GaN HEMT 実験レポート」,トランジ スタ技術,2015年2月号,CQ 出版.